d				Na	tiona	ul In	National Institute of Electronics	f Elect	ronics	& Infe	ormati	on Tec	& Information Technology, Aurangabad	y, Aur	rangah	pad						
Ducan			Teach	ning	and	Exar	Teaching and Examination Scheme for Di	Schem	e for D	iploma	in Elec	tronics	ploma in Electronics Production and Maintenance	ction a	nd Ma	intena	ace					
Iguin	Program Name: Diploma in Electronics Production and Maintenance	a in Elec	etronics	Pro	duct	ion a	und Main	tenanc	e													
Progr	Program Code: DEPM										Wit	h Effec	With Effect from Academic Year: 2021-2022	Acaden	nic Yea	Ir: 20	21-202	2				
Durat	Duration of Program: 6 Semesters	Semeste	LS								Du	ration:	Duration: 16 Weeks	ks								
Semes	Semester: Third																					
				FS	Teaching Scheme	e a							Exami	Examination Scheme	cheme							
Sr.	Course Title	Abbre	Sub.				Credit				Theory						Pr	Practical			Grand	
°Z		viation	code	٦	L	d	(I+1+P)	Paper		ESE		PA	To	Total	E	ESE		PA	L	Total	Total	
			U					Hrs.	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min		
	Digital electronics	DET	21D31	4	•	3	6	3	70	28	30	12	100	40	25	10	25	10	50	20	150	
2 A	Analog electronics-II	AE2	21D32	4		4	8	3	70	28	30	12	100	40	25	10	25	10	50	20	150	_
3 EI	Electrical technology-	ET2	21D33	3	2	5	7	3	70	28	30	12	100	40	25	10	25	10	50	20	150	
4 T	Test and Measurement	MT	21D34	4		4	8	3	70	28	30	12	100	40	25	10	25	10	50	20	150	
S EI	Principles of Electronics	PEC	21D35	4	,	5	6	3	70	28	30	12	100	40	25	10	25	10	20	20	150	
2			Total	19	2	14	35	I	I	1	1	1	1	ı	1	1	1	1	1	1	750	_
Studer Theory Abbrev	Student Contact Hours Per Week: 35 Hrs. Medium of Instruction: English Theory and practical periods of 60 minutes each. Maximum Marks : 750 Abbreviations: ESE- End Semester Exam, PA- Progressive Assessment, L - Lectures, T - Tutorial, P - Practical	ods of 60 Semester	35 Hrs. minutes r Exam,	PA-PA-Duma	h. Prog	re fo	Medium of Instruction: English Maximum Marks : 750 ive Assessment, L - Lectures, T or micro-project assessment to fa	of Instr laximul sment,	n of Instruction: English Maximum Marks : 750 essment, L - Lectures, T -proiect assessment to f	English cs : 750 tures, T ent to fa	n - Tutor acilitate	ial, P - integra	Practica tion of (1 COs and	d the re	maini	1g 20 n	tarks is	the ave	erage of	2 tests to	e e
be take	• Onder the theory is your of your assessment of the cognitive domain LOs required for the attainment of the COs. be taken during the semester for the assessment of the cognitive domain LOs required for: (1) Practical Part - 60% of total marks (ii) Micro-Project Part - 40% of total For the courses having ONLY Practical Examination, the PA has two parts, marks for: (1) Practical Part - 60% of total marks (ii) Micro-Project Part - 40% of total	tter for th	e assessi tical Ex	men	t of th nation	he co n, the	e PA has t	omain l wo par	LOs req ts, marl	quired for (or the at (1) Pract	tainmer tical Pan	nt of the rt - 60%	COs. of total	l marks	(ii) N	licro-P	roject P	art - 40	% of tot	al ord	
marks.	Execution Candidate remaining absent in practical examination will be declare as Absent in Mark List and has to reappear for examination. The marks of the part for wheth a standidate remaining absent in practical examination will be declare as Absent in Mark List and has to reappear for examination. The marks of the part for wheth a standard stand	ing absent	t in prac	tical	exan	ninat	ion will be	declar	e as Ab	sent in A	Mark Li	st and h	las to rea	uppear 1	for exar	ninati	on. The	marks	of the p	art for w	Execut	Direct i. altime
	candidate was present will not be processed or carried forward.	sent will r	not be pr	oces	sed o	r car	ried forws	Pla										•		1.5.	clectron	13
	AFAN ACADEMICS	and the second s	M	Z	A B sede		Department of Electronics	ad f Elec	stronic wada U	iversity.	T	amo	SJ:	sociati	Associate Professor	. SSOT	∕. ssof i g. Tala Enαd	-nag.		aitsul t-	Aurangabad	Intormation Te
	hedegoener						n an		100				5.0	Govt. Colles		I Engl	/ Engineering	Ð			N* ABNOUT	Simol

Semester III

Program Name	:	Diploma in Electronics Production and maintenance
Program Code	:	DEPM
Semester	:	Third
Course Title	:	Digital electronics
Course Code	:	21D31

1. RATIONALE

Digital electronics is a foundation Course for electronics student. Its purpose is to develop proper understanding of basic logic gates, combinational and sequential logic circuits using discrete gates as well as digital ICs. While teaching the subject, teachers should make maximum use of demonstrations to make the subject interesting to the students.

2. COMPETENCY

The intention of this route is to help the student to achieve the following enterprise recognized competency thru various coaching mastering stories

• Construct/ take a look at digital circuits consist of digital ics.

3. COURSE OUTCOMES (COs)

The concept, sensible experiences and relevant tender skills associated with this path are to be taught and implemented, in order that the student demonstrates the following industry-orientated COs related to the above-cited competency:

- a. Use Boolean expressions to realize logic circuits.
- b. Build simple sequential circuits.
- c. Use number system and codes for deciphering working of digital system
- d. Build simple combinational circuits
- e. Test data converters and PLDs in digital electronics systems

4. TEACHING AND EXAMINATION SCHEME

Teac Sche	ching eme								Exar	ninatio	n Scheme	1				
			Credit			Т	heory						Practi	cal		
L	т	Р	(L+T+P)	Paper	ESE		PA		Total		ESI	E	PA	1	Tot	al
	1	-		His.	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min
4	-	2	6	3	70	28	30	12	100	40	25	10	25	10	50	20

(*): Under the theory PA, out of 30 marks, 10 marks are for micro-project assessment to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; **T** - Tutorial/Teacher Guided Theory Practice; **P** - Practical; **C** - Credit, **ESE** - End Semester Examination; **PA** - Progressive Assessment.

5. SUGGESTED PRACTICALS/ EXERCISES

The practical's in this section are PrOs (i.e. sub-components of the COs) to be developed and assessed in the student for the attainment of the competency.

S. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. required
1	Test the functionality of specified logic gates using breadboard. {IC 7404, 7408.7432-7486)	II	02*
2	Test the functionality of NAND and NOR gate of using breadboard (IC 7400 and 7402)	II	02

Ι	DEPM	Sem	ester III		
3	Construct AND, OR, NOT yates using universal gates.	II	02		
4	Build the logic circuit on breadboard to check the De Morgan's	II	02		
	theorems.				
5	Design Half adder and Half subtracter using Boolean expressions.	III	02*		
6	Design Full adder and full subtracter	III	02		
7	Construct and test BCD to 7 segment decoder using IC 7447/7448.	III	02		
8	Build / test function of MUX 74151/74150/any other equivalent	III	02		
9	Build / test function of DEMUX 74155/74154/any other equivalent.	Ill	02		
10	Build / test function of RS flip flop using NAND Gate.	IV	02*		
11	Build / test function of MS JK flip flop using 7476.IV				
12	Use IC 7476 to construct and test the functionality of D and T flip flop.	IV	02		
13	Implement 4-bit ripple counter using 7476.	IV	02		
14	Use IC 7490 to construct decade counter (MOD-10).	IV	02		
15	Implement 4-bit universal shift register.	IV	02		
16	Build R-2R resistive network on breadboard to convert given digital data into analog.	V	02*		
		Total	32		

Note:

- *i.* A suggestive list of **PrOs** is given in the above table. More such PrOs can be added to attain the COs and competency. A judicial mix of minimum 12 or more practical need to be performed, out of which, the practical's marked as '*' are compulsory, so that the student reaches the 'Precision Level' of Dave's 'Psychomotor Domain Taxonomy' as generally required by the industry.
- *ii.* The 'Process' and 'Product' related skills associated with each PrO is to be assessed according to a suggested sample given below;

S. No.	Performance Indicators	Weightage in %
a.	Preparation of experimental set up	20
b.	Setting and operation	20
с.	Safety measures	10
d.	Observations and Recording	10
e.	Interpretation of result and conclusion	20
f.	Answer to sample questions	10
g.	Submission of report m time	10
	Total	100

The above PrOs also comprise of the following social skills/attitudes which are Affective Domain Outcomes (ADOs) that are best developed through the laboratory/field-based experiences:

- a. Follow safety practices.
- b. Practice good housekeeping.
- c. Demonstrate working as a leader/a team member.
- d. Maintain tools and equipment.
- e. Follow ethical practices.

The ADOs are not specific to any one PrO, but are embedded in many PrOs. Hence, the acquisition of the ADOs takes place gradually in the student when s/he undertakes a series of practical experiences over a period of time. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- • 'Valuing Level' in 1^M year
- 'Organizing Level" in 2^{nt} year
- 'Characterizing Level' in 3rd year.

DEPM

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

The major equipment with broad specification mentioned here will usher in uniformity in conduct of experiments, as well as aid to procure equipment by authorities concerned.

S. No.	Equipment Name with Broad Specifications	PrO. S. No.
1	Digital Multimeter: 3 and 14 digits with R, V, I measurements, diode and BJT testing.	All
2	CRO : Dual Channel, 4 Trace CRT / TFT based Bandwidth 20 MHz/30 MHz XIO magnification 20 ns max sweep rate, Alternate triggering Component tester and with optional features such as Digital Read out.	16
3	Pulse generator TTL pulse generator	10-15
4	DIGITAL IC tester: Tests a wide range of Analog and Digital ICs such as 74 Series. 40/45 Series of CMOS ICs.	1-15
5	Bread Board Development System: Bread Board system with DC power output 5V, +/-12V and 0-5V variable, digital voltmeter, ammeter. LED indicators 8 no, logic input switches 8 no, 7segment display 2 no, clock generator, Manual pulser, Breadboard with about 1,600 points. Potentiometer, relay etc.	1-15
6	Trainer kits for digital ICs: Trainer kit shall consist of digital ICs for logic gates, flop-Hop, shift registers, counter along with toggle switches for inputs and bi-colour LED at outputs, built in power supply.	1-15
7	Regulated power supply: Floating DC Supply Voltages Dual DC : 2 x 0 -30V; 0-2A Automatic Overload (Current Protection) Constant Voltage and Constant Current Operation Digital Display for Voltage and Current Adjustable Current Limiter Excellent Line and Load Regulation	1-16
8	Trainer kit for 4-bit Counter using Flip Flops: 4-bit ripple counter. Synchronous Counter. IC 7476 based circuit. Input given by switches and output indicated on LED. Facility to select MOD 8 or MOD 16 mode. Built in DC power supply and manual pulser with indicator.	13

7. UNDERPINNING THEORY COMPONENTS

The following topics are to be taught and assessed in order to develop the sample UOs given below for achieving the COs to attain the identified competency. More UOs could be added.

Unit	Unit Outcomes (UOs) (in cognitive domain)	Topics and Sub-topics
Unit -1 Number System and Codes	 1a. Convert the given number into the specified number system. 1b. Perform the binary arithmetic operation on the given binary numbers. 1c. Convert the given coded number into the other specified code 1d. Add the given two decimal numbers using BCD code. 	 1.1 Number System: base or radix of number system, binary, octal, decimal and hexadecimal number system. 1.2 Binary Arithmetic: Addition, subtraction, multiplication, division. 2 1.3 Subtraction using 1's complement and 2's complement. 1.4 BCD, Gray Code, Excess-3, and rode. 1.5 BCD Arithmetic: BCD Addition
Unit - II Logic gates and logic families	2a. Develop the basic gates using the given NAND/NOR gate as universal gate.	2.1 Logic gates: Symbol, diode/ transistor switch circuit and logical expression, truth table of basic logic gates (AND, OR, NOT), Universal

DEPM		Semester III
Unit- III	 2b. Simplify the given expression using Boolean laws. 2c. Develop logic circuits using the given Boolean expressions. 2d. Compare the salient characteristics of the given digital logic families 	gates (NAND and NOR) and Special purpose gates (EX-OR, EX-NOR), Tristate logic 2.2 Boolean algebra: Laws of Boolean algebra, Duality Theorem, De-Morgan's theorems 2.3 Logic Families: Characteristics of logic families: Noise margin, Power dissipation, Figure of merit, Fan-in and fan-out, Speed of operation, Comparison of TTL, CMOS, types of TTL NAND gate 3.1 Standard Boolean representation:
Combination al Logic Circuits	SOP/ POS form for the given logical expression. 3b. Minimize the given logic expression using K-map. 3c. Use IC 7483 to design the given adder/ subtractor. 3d. Draw MUX/DEMUX tree for the given number of input and output lines. 3e. Write the specifications of (be component for the given application. 3f. Develop the specified type of code	Sum of Product (SOP) and Product of Sum(POS), Min-term and Max-term, conversion between SOP and POS forms, realization using NAND /NOR gates 3.2 K-map reduction technique for the Boolean expression: Minimization of Boolean functions up to 4 variables (SOP and POS form) 3.3 Design of arithmetic circuits and code converter using K-map: Half and full Adder, half and full Subtractor, gray to binary and binary to gray (up to 4 bits) 3.4 Arithmetic circuits: (IC 7483) Adder and Subtractor, BCD adder 3.5 Encoder/Decoder: Basics of encoder, decoder, comparison, (IC 7447) BCD to 7 segment decoder/driver 3.6 Multiplexer and Demultiplexer: working , truth table and applications of Multiplexers and De-multiplexers. MUX tree, IC 74151asMUX: DEMUX tree. DEMUX as decoder, IC 74155 as DEMUX 3.7 Buffer: Tristate logic, unidirectional and bidirectional buffer(IC 741s244,74LS245)
Unit- IV Sequential Logic Circuit	 4a. Use relevant triggering technique for the given digital circuit. 4b. Use the given flip-flop to construct the specific type of counter. 4c. Use excitation table of the given flip-flop to design synchronous counter 4d. Design the specified modulo-N counter using IC7490. 4e. Construct ring/ twisted ring counter using the given flip-flop. 	 4.1 Basic memory cell: RS-latch using NAND and NOR 4.2 Triggering Methods: Edge trigger and level trigger 4.3 SR Flip Flops: SR-flip flop, clocked SR flip flop with preset and clear, drawbacks SR flip Hop 4.4 JK Flip Flops: Clocked JK Flip flop with preset and clear, race around condition in JK flip flop, Master slave JK flip flop, D and T type flip flop Excitation

DEPM			Semester III
Unit- V Data Converters and PLDs	5a. Calculate the output voltage of the R-2R ladder for the given specified digital input. 5b. Calculate the output voltage of the weighted resistor DAC for the given specified digital input. 5c. Explain with sketches the working principle of the M1 given type of ADC. 5e. Explain with sketches the working principle of the given types of memories. 5d. Explain with basic block diagram the working principle of the given type of programmable	U I	4.7475 c diagram of 4-bit nput Serial rallel Output. htput, Parallel Bit Universal conous counter: 4- cup/down Counter, hchronous counter: chronous counter: chronous up/down r: Block schematic ounter, IC 7490 as g counter, Twisted AC: Types, fircuit and R-2R C IC 0808 C: Block Diagram, g of Dual slope ADC IC ication and ROM basic read and write of semiconductor ding blocks and A. PAL. GAL

Note: To attain the COs and competency, above listed UOs need to be undertaken to achieve the 'Application Level' and above of Bloom's 'Cognitive Domain Taxonomy'.

8. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit	Unit Title	Teaching	Distribu	tion of T	heory Ma	ırks
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Number System	06	2	2	4	08
II	Logic gates and logic families	10	4	4	4	12
III	Combinational Logic Circuits	16	4	6	8	18
IV	Sequential Logic Circuit	16	4	6	8	18
V	Data Converters and PLDs	16	4	4	6	14
	Total	64	18	22	30	70

Legends: R=Remember, U'-Understand, A=Apply and above (Bloom's Revised taxonomy) <u>Note</u>: This specification table provides general guidelines to assist student for their learning and to teachers to teach and assess students with respect to attainment of UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may vary from above table

DEPM

9. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related *co-curricular* activities which can be undertaken to accelerate the attainment of (he various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a. Prepare the survey report on the applications of different types of number system and code converters used in the design of digital system.
- b. Compare technical specifications and applications of various types of memory, PLDs, CPLDs and Prepare report.
- c. Test digital ICs using various testing equipment like digital IC tester. Digital multimeter etc.
- d. Give seminar on any course relevant topic.
- e. Conduct library / internet survey regarding different data sheet and manuals.
- f. Prepare power point presentation on digital circuits and their applications.
- g. Undertake a market survey of different digital ICs required for different applications.
- h. Search for video / animations / power point presentation on internet for complex topic related to the course and make a presentation.

10. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various learning outcomes in this course:

- a. Massive open online courses (MOOCs) may be used to teach various topics/sub topics.
- b. *L' in item No. 4* does not mean only the traditional lecture method, but different types of teaching methods and media that are to be employed to develop the outcomes.
- c. About 15-20% of the topics/sub-topics which is relatively simpler or descriptive in nature is to be given to the students for *self-directed learning* and assess the development of the COs through classroom presentations.
- d. With respect to item No. 9, teacher need to ensure create opportunities and provisions for *co-curricular activities*.
- e. Guide student(s) in undertaking micro-projects.
- f. PPTs/Animations may be used to explain the construction and working of electronic circuits.
- g. Guide students for using data sheets / manuals.

11. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project is group-based. However, in the fifth and sixth semesters, it should be preferably be individually undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should not exceed three. The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than *16* (sixteen) student engagement hours during the course. The student ought to submit micro-project by the end of the semester to develop the industry-oriented COs. Micro project report may be of four to five pages.

A suggestive list of micro-projects is given here. Similar micro-projects could be added by the concerned faculty:

a. Build a Digital IC tester circuit.

DEPM

- b. Build a 4bit parity generator and parity checker circuit.
- c. Build a circuit to implement 4-bit adder.
- d. Build a circuit to test 7 segment display.
- e. Build a circuit to implement debounce switch.
- f. Build a circuit for LED flasher.
- g. Build a circuit for LED BAR display
- h. Design and analyze digital arithmetic circuit

12. SUGGESTED LEARNING RESOURCES

S.	Title of Book	Author	Publication
No.			
1	Digital Electronics,	Maini. Anil K.	Wiley India, Delhi, -ISBN:
	Principles and		9780470032145
	Integrated Circuits		
2	Digital Electronics	Puri. V.K.	McGraw Hill. New Delhi, 2016, ISBN:
			97800746331751
3	Digital Circuits and	Salivahanan S.:	Vikas Publishing House, New Delhi, 2013.
	Design	Arivazhagan S.	ISBN: 9789325960411
4	Digital Principles	Malvino. A.P.: Leach.	McGraw Hill Education, New Delhi, 2014,
		D.P.; Saha G,	ISBN : 9789339203405
5	Digital Design	Mano, Morris;	Pearson Education India, Delhi. ISBN:
		Ciletti. Michael D.	9780131989245
6	Modern Digital	Jain. R.P.	McGraw-Hill Publishing, New Delhi ISBN:
	Electronics		9780070669116

13. SUGGESTED SOFTWARE/LEARNING WEBSITES

- a. www.scs.ryerson.ca/~aabhari/cps213Chapter5.ppt
- b. www.eng.wayne.edu/~singhweb/seql.ppt
- c. www.aIlaboutcircuits.com/vol_4/chptl3/3.html
- d. www.youtube.com/watch?v=5Wz5f3n5sjs
- e. www.eee.metu.edu.tr/~cb/e447/Chapter%209%20-%20v2.0.pdf
- f. www.cosc.brocku.ca/Offerings/3P92/seminars/Flash.ppt
- g. www.webopedia.com/TERM/RyRAM.html
- h. www.cs.sjsu.edu/~lee/csl47/Rahman.ppt

Semester III

Program Name	:	Diploma in Electronics Production and maintenance
Program Code	:	DEPM
Semester	:	Third
Course Title	:	Analog electronics-II
Course Code	:	21D32

1. RATIONALE

More suitable use of electronic devices has made electronics engineers to deal with the various styles of digital circuits which generate the desired analog/digital output. Transistor has remarkably increased the application of digital system. Discrete components are extensively utilized in amplifiers and different electronic systems which the diploma holders (also referred to as as technologist) should use or preserve. Getting to know of basic operating principles of digital circuits will help the students to apply the basic digital equipment. This route is advanced in this kind of manner that, college students could be capable of follow the information of simple digital circuit operating to resolve large based totally digital engineering utility issues.

2. COMPETENCY

The goal of this subject is to assist the student to attain the following enterprise recognized competency via diverse teaching learning studies:

• Use Analog devices and power amplifier.

3. COURSE OUTCOMES (COs)

The concept, practical studies and relevant soft skills associated with this route are to be taught and carried out, so that the pupil demonstrates the following enterprise-orientated COs associated with the above-cited competency:

- a. Use transistor as low Power amplifier.
- b. Use BJT as high-Power amplifier.
- c. Use BJT as feedback amplifier.
- d. Use BJT as waveform generator.
- e. Maintain IC voltage regulator and SMPS.

4. TEACHING AND EXAMINATION SCHEME

Teac Sche	hing me			Examination Scheme												
			Credit		Theory						Practical					
L	Т	Р	(L+T+P	Paper	ESE		PA		Tota	1	ES	Е	PA		Total	
		-)	His.	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min
4	-	4	8	3	70	28	30	12	100	40	25	10	25	10	50	20

(*): Under the theory PA, Out of 30 marks, 10 marks are for micro-project assessment to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; **T** - Tutorial/Teacher Guided Theory Practice; **P** - Practical; **C** - Credit, **ESE** - End Semester Examination; **PA** - Progressive Assessment.

5. SUGGESTED PRACTICAL/ EXERCISES

The practical in this section are PrOs (i.e. sub-components of the COs) to be developed and assessed in the student for the attainment of the competency.

* Use bread board for the following Practical (wherever applicable).

Semester III

S. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. Required
1	Build/test the performance of single stage Low Power common emitter amplifier.	Ι	2*
2	Simulate / test output Wave form of single stage common emitter (CE) amplifier using simulation software(like spice, multisim).	Ι	2
3	Simulate/test the output Wave form of single Stage common source FET amplifier using simulation software	Ι	2
4	Build/test the performance of single stage Common source FET amplifier.	Ι	2
5	Build/test the performance of two stage RC Coupled common emitter amplifier using transistor.	Ι	2*
6	Build/test the performance of two stage direct Coupled amplifier using transistor.	Ι	2
7	Build/Test the performance of transformer Coupled amplifier, (Part-I)	Ι	2s
8	Build/Test the performance of transformer Coupled amplifier.(Part-II)	Ι	2*
9	Build/test the performance of single tuned amplifier using transistor.	Ι	2
10	Build/test performance of double tuned common Emitter amplifier. (Part-I)	Ι	2
11	Build/test performance of double tuned common Emitter amplifier. (Part-II)	Ι	2
12	Build/test performance parameters of single stage class A power amplifier.	II	2
13	Build/test performance parameters of class B Push pull amplifier using transistor.	II	2
14	Build/test the performance of Audio power amplifier.	II	2*
15	Use transistor to build/ test voltage series Feedback amplifier parameters with and without feedback.	III	2
16	Use transistor to built/ test voltage shunt Feedback amplifier parameters with and without feedback.	III	2
17	Test the effect of positive and negative feedback on the given amplifier.(Part-I)	III	2*
18	Test the effect of positive and negative feedback on the given amplifier.(Part-II)	III	2*
19	Build RC phase shift oscillator and measure the generated frequency using CRO.	IV	2
20	Build Crystal oscillator and measure the generated frequency using CRO.	IV	2
21	Simulate Hartley oscillator using any relevant simulation software. (Like spice, multisim. Lab view, LTspice, Octeva).	IV	2*
22	Generate a waveform using Miller's sweep generator and measure sweep time and retrace time.	IV	2
23	Simulate dual voltage regulator using JC78XX and 79XX for the specified regulated output voltage	V	2*
24	Build dual voltage regulator for the specified Regulated output voltage.	V	2
25	Build low voltage regulator using IC723 for the given regulated output voltage. (2V to7V)	V	2 *
26	Build high voltage regulator using IC723for the given regulated output voltage.(7V to37V).	V	2
27	Test the performance parameters of voltage regulator using IC LM317	V	2*
	Total		54

National Institute of Electronics & Information Technology, Aurangabad

10 | P a g e

DEPM

Note:

i. A suggestive list of **PrOs** is given in the above table. More such PrOs can be added to attain the COs and competency. A judicial mix of minimum 24 or more practiced need to be performed, out of which, the practical marked as '*' are compulsory, so that the student reaches the 'Precision Level' of Dave's 'Psychomotor Domain Taxonomy' as generally required by the industry

ii. The 'Process' and 'Product' related skills associated with each PrO is to be assessed according to a suggested sample given below;

S. No.	Performance Indicators	Weightage in %
1	Preparation of experimental set up	20
2	Setting and operation	20
3	Safety measures	10
4	Observations and Recording	10
5	Interpretation of result and conclusion	20
6	Answer to sample questions	10
7	Submission of report in time	10
	Total	100

The above PrOs also comprise of the following social skills/attitudes which are Affective Domain Outcomes (ADOs) that are best developed through the laboratory/field-based experiences:

- a. Follow safety practices.
- b. Practice good housekeeping.
- c. Demonstrate working as a leader/a team member.
- d. Maintain tools and equipment.
- e. Follow ethical practices.

The ADOs are not specific to any one PrO, but are embedded in many PrOs. Hence, the acquisition of the ADOs takes place gradually in the student when s/he undertakes a series of practical experiences over a period of time. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

• 'Valuing Level' in I^{s1} year

6.

- 'Organizing Level ' in 2nd year
- 'Characterizing Level' in 3rd year.

MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

The major equipment with broad specification mentioned here will usher in uniformity in conduct of experiments, as well as aid to procure equipment by authorities concerned.

s. No.	Equipment Name with Broad Specifications								
1	Variable DC power supply 0- 30V, 2A, SC protection	All							
2	Dual Power supply 0- 30V, 2A	All							
3	Cathode Ray Oscilloscope, Dual Trace 30Mhz and above, 1 MegaΩ Input Impedance	1-16							
4	Digital storage Oscilloscope, Dual Trace 20Mhz and above, lMegafi Input Impedance	1-16							
5	Function Generator 0-2 MHz with Sine, square and triangular output with variable frequency and amplitude	1-12							
6	Digital Multimeter: 3and 1/2 digit display, 9999 counts digital multimeter measures: V_{ac} , $V_{t C}$ (1000V max), A (j_{C} ; A_{ac} (10 amp max), Resistance (0 -100 Mfi), Capacitance and diode ,transistor tester	All							

Semester III

7	Electronic Work Bench : Bread Board 840 -1000 contact points, Positive and	All
	Negative power rails on opposite side of the board, 0-30 V, 2 Amp Variable DC	
	power supply, Function Generator 0-2MHz, CRO 0-30MHz, Digital multimeter	
8	LCR-Q meter, Test frequency standard 100 Hz / 1 kHz; Parameter L-Q, CD, R-Q	All
	and Z-Parameters L 100 Hz, 120 Hz 1 mH - 9999 H 1 KHz 0.1 mH - 999.9 Ht, C 100	
	Hz, 120Hz 1 pF - 9999 mF Range 1 KHz 0.1 pF - 999.9 mF, Terminals 4 terminals.	

7. UNDERPINNING THEORY COMPONENTS

The following topics are to be taught and assessed in order to develop the sample UOs given below for achieving the COs to attain the identified competency. More UOs could be added.

Unit	Unit Outcomes (UOs) (in cognitive domain)		Topics and Sub-topics
Unit -1 Low Power Amplifier s	la. Explain with sketches the working principle of the given type of amplifier,	 1.2 1.3 1.4 1.5 	Classification of Amplifiers, BJT as an amplifier. Single stage CE amplifier, frequency response, gain, bandwidth Multistage amplifier: General Multistage amplifier BJT based. Type of BJT amplifier coupling: Circuit diagram, operation, frequency response and applications of RC transformer and direct coupling FET Amplifier: Common Source amplifier, working principle and applications Tuned Amplifier: Need of tuned amplifier, basic tuned circuit, circuit diagram, operating principle and frequency response of Single tuned. Double tuned and stagger tuned amplifiers
Unit-II High Power Amplifier s	 2a. Explain with sketches the working of the given type of power amplifier. 2b. Select the relevant power amplifier for the given application with justification, 2c. Calculate efficiency of the given power amplifier. 2d. Compare the performance parameters of the given types of power amplifiers. 2e. Prepare the specifications of the given type of amplifier. 	2.2	Power Amplifier: Comparison between small signal amplifier and power amplifier, performance parameter of power amplifier like: bandwidth, gain, frequency band, efficiency Classification: Class A, Class B, Class AB and Class C Circuit, operation, input /output waveforms, efficiency and power equations of Single Stage Class A, Class B, Class AB and Class C Power amplifier.
	3a. Calculate the gain of the amplifier for the given type of feedback amplifier.3b. Explain effect of negative feedback on the given type of amplifier performance.		Principle of feedback Amplifier Types of feedback: negative and positive feedback, advantages and disadvantages of negative feedback

Semester III

	3c. Calculate Gain, Bandwidth, Input and	3.3	Types of feedback connections, voltage
	Output resistance of the given feedback		shunt, voltage series, current series and
	amplifier.		current shunt: block diagram, circuit
	3d. Compare the performance of given		diagram, and operation
	types of negative feedback amplifiers.		
Unit IV	4a. Calculate frequency of oscillation for	4.1	Oscillators: Need, oscillator and
Wave	the given type of oscillator circuit.		amplifier
form	4b. Select the relevant oscillator	4.2	Condition for oscillation (Barkhausen's
Generato	to obtain the given range of frequency with		criteria), classification of oscillators
rs	justification.	4.3	Sine wave Oscillator: RC Phase shift
	4c. Choose the relevant sweep generator to		oscillator and crystal oscillator, concept.
	obtain the specified saw tooth waveform		working and applications
	with justification.	4.4	Sweep generator: Miller sweep, Bootstrap
	4d. Prepare the specifications of the given		circuit, current time base generator
	oscillator.		
Unit- V	5a. Explain with sketches the working	5.1	Types of IC Voltage Regulator: Fixed and
IC	principle of given type of voltage regulator		variable: 78XX, 79XX, specification,
Voltage	IC.		series and LM723, LM317, line and load
Regulator	5b. Compare the working of the given types		regulation.
s and	of regulators.	5.2	SMPS: Block diagram, working principle,
SMPS	5c. Design voltage regulator for the		specifications, special features, advantages,
	specified output voltage.		disadvantages and applications.
	5d. Interpret the working of given block of	5.3	Use of heat sink for regulated power
	the SMPS.	1	supply

Note: To attain the COs and competency, above listed UOs need to be undertaken to achieve the 'Application Level' and above of Bloom's Cognitive Domain Taxonomy'.

8. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit	Unit Title	Teaching	Teaching Distribution of Theory Marks									
No.		Hours	R	U	Α	Total						
			Level	Level	Level	Marks						
Ι	Low Power Amplifiers	14	4	6	6	16						
II	High Power Amplifiers	18	4	6	8	18						
III	Feedback Amplifiers	12	4	4	4	12						
IV	Waveform Generators	12	4	4	6	14						
V	IC voltage Regulators and SMPS	08	2	4	4	10						
	Total	64	18	24	28	70						

Legends: R=Remember, U=Understand, A= Apply and above (Bloom's Revised taxonomy)

<u>Note</u>: This specification table provides general guidelines to assist student for their learning and to teachers to teach and assess students with respect to attainment of UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may vary from above table.

9. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related cocurricular activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

DEPM

- a. Undertake micro-projects.
- b. Give seminar on any relevant topic.
- c. Library survey regarding different electronics circuits and voltage regulators.
- d. Prepare power point presentation for electronic circuits.
- e. Undertake a market survey of different electronics circuits and voltage regulators.

10. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various learning outcomes in this course:

a. Massive open online courses (MOOCs) may be used to teach various topics/sub topics.

b. 'L' in item No. 4 does not mean only the traditional lecture method, but different types of teaching methods and media that are to be employed to develop the outcomes.

c. About 15-20% of the topics/sub-topics which is relatively simpler or descriptive in nature is to be given to the students for self-directed learning and assess the development of the COs through classroom presentations.

d. With respect to item No. 9, teachers need to ensure to create opportunities and provisions for co-curricular activities.

- e. Guide student(s) in undertaking micro-projects.
- f. Guide students for using data manuals.
- g. Use PPTs to explain the construction and working of rectifier.
- h. Use PPTs to explain the construction and working of wave shaping circuits

11. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based. However, in the fifth and sixth semesters, it should be preferably be individually undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should not exceed three. The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than 16 (sixteen) student engagement hours during the course. The student ought to submit micro-project by the end of the semester to develop the industry-oriented COs. Micro project report may be of four to five pages.

A suggestive list of micro-projects are given here. Similar micro-projects could be added by the concerned faculty:

- a. Construct a doorbell using transistor.
- b. Using transistor construct a clap switch.
- c. Construct audio amplifier using (IC810 or equivalent IC).
- d. Construct power amplifier for FM receiver output.

e. Drive a speaker using class A amplifier which is directly coupled and test its performance parameters.

f. Using Class AB push pull amplifier drive speaker, test its performance parameters.

g. IC regulators: Build a circuit of Dual regulated power supply on general purpose PCB to obtain +/- 15 V, 500mA using IC 78XX & 79XX series.

h. IC regulators: Build a regulated power supply on general purpose PCB to obtain + 5V, 500mA using IC 78XX series. Drive suitable load with regulated output.

i. IC regulators: Build a regulated power supply on general purpose PCB to obtain-20V, 500mA using IC 79XX series. Use suitable heat sink. Drive suitable load with regulated output.

j. IC Regulators: Build a constant current regulator on general purpose PCB for output current of 125mA using IC 317.

k. IC Regulators: Construct low voltage regulator on general purpose PCB for output

12. SUGGESTED LEARNING RESOURCES

S. No.	Title of Book	Author	Publication
1	Electronic Devices and	Boylestead. Robert.	Pearson Education, New Delhi,
	Circuit Theory	Neshelsky, Louis	2014. ISBN: 9780132622264
2	Modem Power	Sen, P.C.	S.Chand, New Delhi, 2015
	Electronics		ISBN:9788121924252
3	Principles of Electronics	Mehta, V.K. Mehta,	S.Chand, New Delhi, 2014
		Rohit	ISBN:8121924502
4	Fundamental of	Bell,	Oxford University Press, New Delhi.
	Electronic Devices and		2015, ISBN:9780195425239
	Circuits		
5	Electronic Devices and	Millman, Jacob Halkias,	Mc Graw Hill Education, New Delhi
	Circuits	C. Christos Jit, Satyabrata	2015, ISBN:9789339219550
6	Applied Electronics	Sedha, R.S.	S.Chand. New Delhi, 2015
			ISBN:9788121927833

13. SUGGESTED SOFTWARE/LEARNING WEBSITES

- a. www.colorado.edu/physics/phys3330/PDF/Experiment7.pdf
- b. www.alldatasheet.com/view.jsp?Searchword=Bcl47
- c. www.williamson-labs.com
- d. www.futurlec.com
- e. www.radio-electronics.com/info/power-management/switching-mode-power-supply/basicstutori al .php
- f. www.circuitstoday.com/ic-723-voltage-regulators

Semester III

Program Name	:	Diploma in Electronics Production and maintenance
Program Code	:	DEPM
Semester	:	Third
Course Title	:	Electrical Technology-II
Course Code	:	21D33

1. **RATIONALE**

In industry, to build and take a look at electronic/electrical circuits in extraordinary conditions knowhow of electrical circuits and networks could be very vital. This subject is meant to expand the abilities to diagnose and rectify the electric networks and circuit associated problems inside the industry. The idea and standards of circuit evaluation lays the foundation to recognize courses of advance technologies.

2. COMPETENCY

The goal of this subject is to help the student to attain the following industry identified competency through various teaching learning experiences:

• Diagnose the electrical and electronic circuits problems.

3. COURSE OUTCOMES (COs)

The curriculum associated with this subject are to be trained and applied, in order that the student demonstrates the subsequent industry-oriented COs related to the above-stated competency:

- a. Use the working of single phase a.c. circuits.
- b. Check the resonance condition of electric/electronic circuits.
- c. Check the functionality using the principles of circuit analysis.
- d. Use network theorems to determine the various parameters in circuits.
- e. Use two port networks to determine the circuit parameters.

4. TEACHING AND EXAMINATION SCHEME

Teac Sche	ching eme				Examination Scheme											
			Credit			Т	heory						Practi	cal		
L	т	Р	(L+T+P)	Paper	ESE		PA		Tota	l	ESI	E	PA	1	Tota	al
				Hrs.	Max	Min	Mas	Min	Max	Min	Max	Min	Max	Min	Max	Min
3	2	2	7	3	70	28	30	12	100	40	25	10	25	10	50	20
			-				-			-						

(*): Under the theory PA, out of 30 marks, 10 marks are for micro-project assessment to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; **T** - Tutorial/Teacher Guided Theory Practice; **P** - Practical; **C** - Credit. **ESE** - End Semester Examination; **PA** - Progressive Assessment.

5. SUGGESTED PRACTICAL/ EXERCISES

The practical in this section are PrOs (i.e. sub-components of the COs) to be developed and assessed in the student for the attainment of the competency.

S. No.	Practical Outcomes (PrOs)		Approx. Hrs. Required
1	Determine active, reactive and apparent power consumed in given R-L series circuit and draw phasor diagram.	Ι	02

Semester III

2	Determine active, reactive and apparent power consumed in given R-C	Ι	02
	series circuit and draw phasor diagram.		
3	Determine active, reactive and apparent power consumed in given R-L-C series circuit and draw phasor diagram.	Ι	02*
4	a. Measure currents in R-C parallel A. C. circuit.	Ι	02
	b. Determine p.f. active, reactive and apparent power in R-C		
	parallel A.C. circuit		
5	 a. Measure currents in each branch of given R-L-C parallel a. c. circuit. b. Determine p.f. active, reactive and apparent power for given R-L-C Parallel circuit with series connection of resistor and inductor in parallel with capacitor. 	Ι	02
6	Determine initial and final voltage across the capacitor at $t=0^-$ and $t=0^+$.	Ι	02
7	Determine initial and final current through the inductive coil at t=0" and t= 0^+	Ι	02
8	Create resonance in given R-L-C circuit by varying L and C or by using variable frequency supply.	II	02*
9	Determine current, through the given branch of an electric network by applying mesh analysis.	III	02
10	Determine voltage at the particular node and current through any given branch of the network by applying nodal analysis.	III	02*
11	Determine current through the given branch and voltage across the given element of circuit by applying superposition theorem .	IV	02*
12	Determine equivalent circuit parameter in a given circuit by applying Thevenin's and Norton's theorem .	IV	02
13	Determine load resistance for maximum power transfer for a given circuit by applying maximum power transfer theorem .	IV	02
14	Test the response of the given circuit by applying reciprocity theorem.	IV	02
15	Determine open circuit (Z) parameters for the given network.	V	02*
16	Determine short circuit (Y) parameters for the given network.	V	02
17	Determine transmission (ABCD) parameters for the given network.	V	02
- /	Total		34

Note

- i. A suggestive list of **PrOs** is given in the above table. More such PrOs can be added to attain the COs anil competency. A judicial mix of minimum 12 or more practical need to be performed, out of which, the practical's marked as '*' are compulsory, so that the student reaches the 'Precision Level' of Dave's 'Psychomotor Domain Taxonomy' as generally required by the industry,
- ii. The 'Process' and 'Product' related skills associated with each PrO is to be assessed, according to a suggested sample given below:

S. No.	Performance Indicators	Weightage in %
1	Preparation of experimental set up	20
2	Setting and operation	20
3	Safety measures	10
4	Observations and recording	10
5	Interpretation of result and conclusion	20
6	Answer to sample questions	10
7	Submission of report in time	10
	Total	100

The above PrOs also comprise of the following social skills/attitudes which are Affective Domain Outcomes (ADOs) that are best developed through the laboratory/field-based experiences:

a. Follow safe practices

- b. Practice good housekeeping
- c. Practice energy conservation
- d. Demonstrate working as a leader/a team member
- e. Maintain tools and equipment
- f. Follow ethical practices.

The ADOs are not specific to any one PrO. but are embedded in many PrOs. Hence, the acquisition of the ADOs takes place gradually in the student when s/he undertakes a series of practical experiences over a period of time. Moreover, the level of achievement of the ADOs according to KrathwohPs 'Affective Domain Taxonomy' should gradually increase as planned below:

- 'Valuing Level' in Is' year
- 'Organizing Level' in 2"^d year
- 'Characterizing Level' in 3rd year.

6. MAJOR EQUIPMENT/INSTRUMENTS REQUIRED

The major equipment with broad specification mentioned here will usher in uniformity in conduct of experiments, as well as aid to procure equipment by authorities concerned.

s. No.	Equipment Name with Broad Specifications	PrO. No.
1	Ammeters MI Type: AC/DC, 0-1Amp,0-1.5 Amp.O-2.5Amp,0-5Amp.	1 to 17
2	Voltmeter MI Type: AC/DC, 0-150/300V, 0-250/500V, 0-75/150V.	1 to 17
3	Ammeters PMMC Type: DC, 0-1.5/3Amp, 0-2.5/5 Amp, 0-5/10 Amp.	1 to 17
4	Voltmeter PMMC Type: DC, 0-150/300V, 0-250/500V.O-75/150V.	1 to 17
5	Wattmeter: Single phase 2.5/5Amp, 200/400V. Single phase 5/10Amp,	1 to 17
	250/500V	
6	Low power factor wattmeter: Single phase. 5/10 Amp, 250/500V.	1 to 5
7	Wattmeter: Dynamometer type, single phase. 5Amp, 250V.	1 to 5
8	Power factor meters: AC, 230V,45-50-55 Hz, single phase, 5-10 Amp, 250 V.	1 to 5
9	Digital storage oscilloscope 50MHz.	6,7
10	Trainer kit for all theorems	9 to 17

7. UNDERPINNING THEORY COMPONENTS

The following topics are to be taught and assessed in order to develop the sample UOs given below for achieving the COs to attain the identified competency. More UOs could be added.

Unit	Unit Outcomes (UOs) (in cognitive domain)	Topics and Sub-topics
Unit -I Single Phase A.C. Circuits	circuit. 1d. Suggest the power factor improve	circuits, impedance, reactance, phasor diagram, impedance triangle, power factor, active(real) power, apparent power, power triangle. 1.2 AC Series circuit by using complex algebra Parallel 1.3AC circuits: Resistance in parallel with pure inductance and capacitance, series combination of resistance and inductance in parallel with capacitance

Semester III

		1	
	given circuit. 1g. Interpret the working of the given R,L,		$t = \infty R$, L and C at initial and final ditions
	and C component using initial and final		
	condition.		
Unit-II	2a. Find the resonance condition for the	2.1	Series and parallel resonance
Resonance	specified series and parallel circuits.		Impedance and phase angle of a Series
in Series and	2b. Calculate current, voltage and		and parallel resonant circuits
Parallel	frequency for the given resonant	2.3	Voltage and current in a series and
Circuits	circuit.		parallel resonant circuit
	2c. Determine bandwidth and quality	2.4	Bandwidth of a RLC circuit (series and
	factor(Q) for the given series and	25	parallel resonance) Quality factor (Q) and its affect on
	parallel resonant circuit. 2d. Describe the procedure to tune the	2.3	Quality factor (Q) and its effect on bandwidth (series and parallel resonance)
	given electrical circuit using the	26	Magnification in series and parallel
	principles of resonance.	2.0	resonance circuits
Unit-III	3a. Use source transformation techniques	3.1	
	for the given circuit.		Star/delta and delta/star transformations
Circuit	3b. Convert the given star connection to	3.3	Mesh analysis
Analysis	delta connection and vice versa,	3.4	Node analysis
	3c. Use mesh analysis to solve the given		
	network.		
	3d. Solve the given network using nodal		
	analysis.		
	3e. Diagnose the fault in the given circuit		
	using the relevant technique(s).		
Unit-IV	4a. Use superposition theorem to calculate	4.1	Superposition theorem for both AC
Network	the given parameters in the given circuit.		voltage and DC source
Theorems	4b. Apply Thevenin's theorem to calculate	4.2	Thevenin's theorem
	the given parameters in the given circuit.	4.3	Norton's theorem
	4c. Use Norton's theorem to calculate the		Maximum power transfer theorem
	given parameters in the circuit.		Reciprocity theorem
	4d. Calculate load impedance using maximum power transfer theorem for	4.6	Superposition theorem
	the given circuit,		
	4e. Use reciprocity theorem to analyze		
	the given circuit.		
Unit-V Two	5a. Calculate Z, Y, parameters for the	5.1	Significance of two port network
Port	given circuit.	5.2	
Networks	5b. Find the ABCD parameters for the		Parameters
	given circuit.	5.3	Transmission (ABCD) parameter
	5c. Sketch the phasor diagram for the	5.4	1
	given T and <i>n</i> circuit with justification. 5d. Calculate Z and Y parameters to test	5.5	Reciprocal and symmetrical two port
	whether the given circuit is reciprocal or	5 6	network(no derivation)
	symmetrical two port network.	5.0	AC motors: Principle of single-phase induction motor, speed -torque
			characteristics, and applications.
		L	enaracteristics, and applications.

Note: To attain the COs and competency, above listed UOs need to be undertaken to achieve the 'Application Level' and above of Bloom's 'Cognitive Domain Taxonomy'

DEPM

8. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit	Unit Title	Teaching	Distribution of Theory Marks			ks
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Single Phase A.C. Circuits	10	04	04	06	14
II	Resonance in Series and Parallel	10	02	06	06	14
	Circuits					
III	Principles of Circuit Analysis	10	04	04	06	14
IV	Network Theorems	12	04	06	08	18
V	Two port networks	06	02	04	04	10
	Total	48	16	24	30	70

Legends: R=Remember, U=Understand. A =Apply and above (Bloom's Revised taxonomy) <u>Note</u>: This specification table provides general guidelines to assist student for their learning and to teachers to teach and assess students with respect to attainment of UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may vary from above table.

9. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related cocurricular activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a. Prepare journals based on practical performed in laboratory.
- b. Follow the safety precautions.
- c. Use various meters to test electric/Electronic equipment and component.
- d. Library/Internet survey of electrical circuits and network.
- e. Prepare power point presentation or animation tor understanding different circuits behavior.

10. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various learning outcomes in this course:

- h. Massive open online courses (MOOCs) may be used to teach various topics/sub topics.
- i. L' in item No. 4 does not mean only the traditional lecture method, but different types of teaching methods and media that are to be employed to develop the outcomes.
- j. About 15-20% of the topics/sub-topics which is relatively simpler or descriptive in nature is to be given to the students for *self-directed learning* and assess the development of the COs through classroom presentations.
- k. With respect to item No. 9, teacher need to ensure create opportunities and provisions for *co-curricular activities*.
- 1. Guide student(s) in undertaking micro-projects.
- m. PPTs/Animations may be used to explain the construction and working of electronic circuits.
- n. Guide students for using data sheets / manuals.

11. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project is group-based. However, in the fifth and sixth semesters, it should be preferably be individually undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students

in the group should not exceed three. The micro-project could be industry application based, internetbased, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than 16 (sixteen) student engagement hours during the course. The student ought to submit micro-project by the end of the semester to develop the industry-oriented COs. Micro project report may be of four to five pages.

A suggestive list of micro-projects is given here. Similar micro-projects could be added by the concerned faculty:

- a. Single **Phase A.C. series and parallel Circuits:** Prepare series and parallel circuit using variable R, L and C combination on the bread board. Measure the response and draw vector diagram. Also calculate power factor for the circuit. Write report on the same.
- b. **Resonance in series and Parallel Circuits:** Prepare series RLC circuit using variable R, L and C combination on the bread board. Tune the circuit for resonance condition. Measure the responses and calculate band width and Q-factor for the circuit, Write report on the same.
- c. **Resonance in Series and parallel Circuits:** Prepare parallel RLC circuit using variable R, L and C combination on the bread board. Tune the circuit for resonance condition. Measure the response and calculate band width and Q-factor for the circuit. Write report on the same.
- d. **Principles of circuit analysis:** Prepare power point presentation on source transformation, star delta transformation, mesh and nodal analysis and give presentation in the class room.
- e. **Network Theorems:** Select suitable components for the given circuit and prepare **the** same on the bread board. Verify the following network theorem theoretically and practically.
 - i. Superposition Theorem
 - ii. Maximum power transfer theorem
 - iii. Thevenin's theorem
 - iv. Norton's theorem,
- f. **Two Port Networks:** Design and prepare two port networks on bread board for given values of open circuit Z parameter.
- g. **Two Port Networks:** Design and prepare two port networks on bread board for given values of short circuit Y parameter.

12. SUGGESTED LEARNING RESOURCES

s. No.	Title of Book	Author	Publication
1	Basic Electrical	Mittle, V.N.;	McGraw Hill Education, Noida,
	Engineering	Mittle, Arvind	2005, ISBN: 9780070593572
2	A Text Book of Electrical	Theraja, B. L, :	S. Chand and Co., New Delhi, 2006
	Technology Vol-I	Theraja, A. K.	ISBN: 978-81-219-2440-5
3	Fundamentals of Electrical	Saxena, S.B.;	Cambridge university press pvt.
	Engineering	Dasgupta, K.	Ltd., New Delhi, 2016, ISBN :
			9781107464353
4	Circuit and network	Sudhakar, A.; Palli	McGraw Hill, New Delhi, 2006 ISBN :
		Shyammohan, S.	978-0-07-340458-5
5	Electric Circuits	Bell, David A.	Oxford University Press New Delhi,
			2009 ISBN: 9780195425246
6	Electric Circuit Analysis	Paranjothi, S.R.	New Age Publisher, New Delhi, 2011.
			ISBN: 978-81-224-3154-4
7	Fundamentals of Electrical	Gupta, B.R; Singhal,	S.Chand and Co., New Delhi, 2005
	Networks	Vandana	ISBN: 978-81-219-2318-7

Semester III

8	Schaum's Outline of	Edminister, Joseph A.	McGraw Hill, New Delhi, 2013 ISBN:
	Electric Circuits	Nahvi,Mahmood	9780070189997
9	Introductory circuit Analysis.	Boylested, R.L.	Wheeler, New Delhi ,2013
			ISBN: 978-0023131615

13. SUGGESTED SOFTWARE/LEARNING WEBSITES

- a. www.ni.com/multisim
- b. www.dreamtechpress.com /ebooks
- c. www.nptelvideos.in/electrical engineering/ circuit theory
- d. www.leamerstv.com/free-engineeritiL;
- e. electronicsforu.com/category/electronics-projects

Program Name	:	Diploma in Electronics Production and maintenance
Program Code	:	DEPM
Semester	:	Third
Course Title	:	Test and Measurement
Course Code	:	21D34

1. RATIONALE

Test and Measurement is a rising subject, used for statistics sensing, acquisition, transmission, evaluation and control in diverse sensible packages. Analog and Digital instruments are particularly used to degree distinctive process manipulate parameters. The physical portions/parameters are be convened into electrical signal with the help of numerous forms of sensors and transducers and extensively utilized to hold electronic manage and automation gadget. Managing take a look at and measuring tool is the crucial pastime of the degree engineering bypass outs (additionally known as technologists) after they paintings in any digital automation industry.

2. COMPETENCY

The aim of this course is to help the student to attain the following industry identified competency through various teaching learning experiences:

• Test and Measurement of electronic system in process and manufacturing industries.

3. COURSE OUTCOMES (COs)

The theory, practical experiences and relevant soft skills associated with this course are to be taught and implemented, so that the student demonstrates the following industry-oriented COs associated with the above-mentioned competency:

- a. Use various types of transducers and sensors to measure quantities.
- b. Maintain signal conditioning and data acquisition system.
- c. Calibrate different electronic instrument,
- d. Use the relevant instrument to measure specified parameters.
- e. Interpret working of various types of sensors and transducers.
- f. Interpret the characteristics of measuring instrument.

4. TEACHING AND EXAMINATION SCHEME

Tea Sche	ching eme			Examination Scheme												
			Credit		Theory							Practi	cal			
L	Т	Р	(L+T+P)	Paper ESE		SE PA		Total	Total ESE		Ξ	PA		Total		
				His.	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min
4	-	4	8	3	70	28	30	12	100	40	25	10	25	10	100	40

(*): Under the theory PA, out of 30 marks, 10 marks are for micro-project assessment to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; **T** - Tutorial/Teacher Guided Theory Practice; **P** - Practical; **C** - Credit, **ESE** - End Semester Examination; **PA** - Progressive Assessment

5. SUGGESTED PRACTICALS/EXERCISES

The practical's in this section are PrOs (i.e. sub-components of the COs) to be developed and assessed in the student for the attainment of the competency.

s. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. Required	
-----------	---------------------------	-------------	-----------------------------	--

Semester III

1	Use analog multimeter to determine accuracy, resolution and hysteresis	Ι	02*
	for specified measured quantity		
2	Use analog meters to measure voltage, current and resistance	Ι	02*
3	Use digital meters to measure voltage, current and resistance.	III	02*
4	Calibrate the given analog voltmeter.	II	02*
5	Calibrate the given analog ammeter.	II	02
6	Select the relevant range of CRO for various measurement by	III	02
	varying positions of front panel knobs.		
7	Use CRO to measure amplitude and frequency of the given input signal.	III	02
8	Generate Lissajous pattern on CRO to measure frequency of the given	III	02*
	input signal.		
9	Generate Lissajous pattern on CRO to measure phase of the given input	III	02
	signal		
10	Use function generator to generate different types of waveforms and	III	02
	observe them on DSO.		
11	Use DSO to measure amplitude and frequency of the given input signal.	III	02
12	Use spectrum analyzer to measure frequency band of the given input	III	02
	signal.		
13	Test the characteristics of the potentiometer.	IV	02*
14	Test relation between Linear displacement and output voltage using	IV	02
	LVDT.		
15	Use strain gauge to measure applied pressure.	V	02*
16	Use RTD (Pt-100) to measure temperature of the given liquid.	V	02*
17	Use thermocouple to measure temperature of liquid.	V	02
18	Use bourdon tube and LVDT to measure applied pressure.	V	02*
19	Use venturi tube to measure flow of fluid.	V	02
20	Use orifice plate to measure flow of fluid.	V	02
21	Use rotameter to measure flow of liquid.	V	02*
22	Use pH meter to measure pH value of given solution.	V	02*
23	Use multimeter/CRO to measure voltage at output of given signal	VI	02
	conditioning circuit.		
24	Test the performance of Portable Data Acquisition System.	VI	02*
25	Troubleshoot of potentiometer.	VI	02
26	Troubleshoot of strain gunge.	VI	02
27	Troubleshoot of venture tube.	VI	02*
28	Troubleshoot of rotameter	VI	02
	Total		56

Note:

iii. A suggestive list of **PrOs** is given in the above table. More such PrOs can be added to attain the COs and competency. A judicial mix of minimum 12 or more practical need to be performed, out of which, the practical marked as '*' are compulsory, so that the student reaches the 'Precision Level' of Dave's 'Psychomotor Domain Taxonomy' as generally required by the industry.

iv. The 'Process' and 'Product' related skills associated with each PrO is to be assessed according to a suggested sample given below:

S. No.	Performance Indicators	Weightage in %
a.	Preparation of experimental set up	20
b.	Setting and operation	20
с.	Safely measures	10
d.	Observations and Recording	10
e.	Interpretation of result and Conclusion	20

Semester III

f.	Answer to sample questions	10
g.	Submission of report in time	10
	Total	100

The above PrOs also comprise of the following social skills/attitudes which are Affective Domain Outcomes (ADOs) that are best developed through the laboratory/field-based experiences:

- a. Follow safety practices.
- b. Practice good housekeeping.
- c. Demonstrate working as a leader/a team member.
- d. Maintain tools and equipment.
- e. Follow ethical Practices.

The ADOs are not specific to any one PrO, but are embedded in many PrOs. Hence, the acquisition of the ADOs takes place gradually in the student when s/he undertakes a series of practical experiences over a period of time. Moreover, the level of achievement of the ADOs according to KrathwohPs "Affective Domain Taxonomy' should gradually increase as planned below:

- 'Valuing Level' in 1st year
- 'Organizing Level' in 2^{ml} year
- 'Characterizing Level' in 3rd year

6. MAJOR EQUIPMENT/INSTRUMENTS REQUIRED

S. No.	Equipment Name with Broad Specifications	PrO. s No.
1	Analog multi-meter: 0-1 OA, 0-600V, 0-IOMΩ	1,2,4,5
2	Digital multi-meter: 0-10A, 0-600V. 0-10MΩ	All
3	Dual trace CRO with probe: Bandwidth AC 10Hz -20MHz (-3dB). DC -20MHz (-3dB), XI0 Probe	6,7,8,9
4	Digital storage oscilloscope: Bandwidth 60MHz, Dual Channel	10,11
5	Function generator: Frequency Ranges: 0.1 Hz to 11 MHz Pulse and Ramp Aspect Ratio: 95:5	8,9,10
6	Spectrum analyzer: 9 kHz - 26.5 GHz	12
7	LVDT: Stroke range>e ± 0.1 $ \pm 2.54 $ or available range	14
8	Strain gauge: Universal general- purpose strain gages	15
9	RTD and Thermocouple (any one type): Pt 100, Type K, Chrome! (+) Alumel(-).0tol260°C	16,17
10	Venturi tube: process temperatures between -20 "F and +350F (-30 °C and +175 °C), accuracy of \pm 0.50% for standard meters and \pm 0,25% for flow calibrated meters. Orifice plate and rpm meter: 30mm diameter	16,17
11	pH meter: Portable pH meter range from 0 to 14 resolution 0.1/0.001pH RS.232C output and supply Data connector cable, digital display with 0.001 pi I unit readability	22
12	Portable Data Acquisition System Specification: 24-bit ADC/ch, 4 analog voltage inputs, Powered by USB	23,24

7. UNDERPINNING THEORY COMPONENTS

The following topics are to be taught and assessed in order to develop the sample UOs given below for achieving the COs to attain the identified competency. More UOs could be added.

DEPM

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(in cognitive domain)	
Unit- I Fundamen- tal of electronics measure-	 1a. Classify the given measuring instrument. 1b. Determine static and dynamic characteristics of the measuring instruments with the given data. 	 1.1 Fundamentals of electronic measurement: 1.2 Characteristics of measurement: statics and dynamics characteristics, error in
ments	1c. Identify the standards for calibration of the given instrument with justification.1d. Explain with sketches the generalized procedure for calibration of the given instrument	measurement, types of error. 1.3 Standards of measurement 1.4 Calibration: Need and meaning of calibration
Unit-II Analog and Digital meters	 2a. Determine resolution, sensitivity and accuracy of the given digital display. 2b. Convert the PMMC instrument into DC ammeter for the given range. 2c. Convert the PMMC instrument into DC voltmeter for the given range. 2d. Explain with sketches the working of given type of ohm meter, AC voltmeter. 2e. Prepare specification of the given instrument. 	 2.1 Indicating and display device: D Arsonval movement, PMMC , moving iron, LCD, LED 2.2 Analog and Digital meters: Type of analog and digital meters, voltmeter, ammeter, ohm meter, extension of measuring range of meters, applications of meters, Calibration of meters
Unit-III Oscilloscope, Function generator, and Spectrum analyzer	 3a. Explain with sketches the working of the given blocks and type of oscilloscope. 3b. Explain with sketches the procedure to measure the given parameters using CRO. 3c. Describe the function of the given blocks of signal/function generator. 3d. Explain with sketches the procedure to test the given types of signals using the relevant type lest and measuring instrument. 3e. Select CRO/ DSO, analyzer and function generator for specified application with justification. 3f. Prepare specification for the given instrument. 	 3.1 CRO: Block diagram of CRO, CRT, vertical deflection system and horizontal deflection system, need of delay line, time base generator, amplitude and frequency measurement using CRO, Lissajous patterns for phase and frequency measurement, component testing using CRO, dual trace and dual beam CRO. 3.2 DSO: Block diagram of DSO, various function, and applications of DSO 3.3 Function generator: Block diagram of function generator, application of function generator, Spectrum analyzer: Block diagram of spectrum analyzer and its applications.
Unit-IV Sensors and Transducers	 4a. Describe the function of the given block of instrumentation system with the help of suitable block diagram. 4b. Select relevant transducers for given application with justification. 4c. Differentiate the features transducers and sensors for the given quantity measurement. 4d. Explain with sketches the working principle of given type of thermal sensor. 	 4.1 Instrumentation System; Block diagram of instrumentation system, function of each block. 4.2 Sensors and Transducers: basic definition. difference, classification of sensors 4.3 Thermal, optical, magnetic and electric sensors. 4.4 Transducer: Need of transducer, types of transducer: Primary, secondary, active, passive, analog,

DEPM		Semester III
	4e. Select lite relevant transducer for the given range of displacement measurement with justification.	 digital, resistive, capacitive, inductive (LVDT, RVDT), piezoelectric transducer, selection criteria of transducer. 4.5 DC Bridges: Wheatstone and Kelvin bridges. 4.6 AC Bridges: General AC Bridge, Capacitor comparison bridge, Inductance comparison bridge ,Maxwell bridge, Hey bridge, Schering bridge, Wein bridge and their applications such as Q factor & D
Unit-V Applications of sensors and transducers	 5a. Explain with sketches the working principle of the given transducers. 5b. Select suitable transducer for the given level measurement with justification. 5c. Select the relevant sensor for the given range of temperature measurement with justification. 5d. Select the relevant transducer for the given range of pressure measurement with justification 5e Select the relevant sensor/ transducer for the specified. 	factor measurement.5.1 Level measurement: Need of levelmeasurement, float type, capacitivetype, ultrasonic type, radiation type,working principle, construction ofeach. 5.2 Temperature measurement:thermistor, RTD (Pt-100),thermocouple: see back and Peltiereffects(J,K,R,S,T types),opticalpyrometer5.3Pressure measurement: Types,Bourdon tube, Bellows, Diaphragm,pressure measurement using Bourdontube and LVDT5.4 Flow measurement: types, Variablehead flow meter: Venturi meter, orificeplate meter, Variable area flow meter:Rotameter, electromagnetic Howmeter, ultrasonic flow meter5.5 Special transducers andmeasurement: Humidity measurementusing hygrometer, pH measurement
Unit-VI Signal Conditioning	 6a. Explain the need of sigma conditioning for the given measurement. 6b. Differentiate between the given block of ac and DC signal conditioning circuits 6c. Describe function of the given block of DAS. 6d. Explain with sketches the working of data acquisition system for the specified application. 	 6.1 Signal conditioning: need of signal conditioning. Types of signal conditioning: Block diagram of AC and DC signal conditioning circuits 6.2 Data acquisition system (DAS): Type of DAS, Application of DAS with example. 6.3 Testing of Components - Testing of Active & Passive components, common failures of various components system of units.

Note: To attain the COs and competency, above listed UOs need to be undertaken to achieve the 'Application Level' and above of Bloom's 'Cognitive Domain Taxonomy'.

Semester III

8. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit	Unit Title	Teaching	Distributi	on of The	ory Mar	ks	
No.		Hours	R	U	Α	Total	
			Level	Level	Level	Marks	
Ι	Fundamental of electronics	08	02	02	04	8	
	measurements						
II	Analog and Digital meters	14	02	06	06	14	
III	Oscilloscope Function generator and	14	02	04	08	14	
	Spectrum analyzer						
IV	Sensors and transducers	10	02	04	06	12	
V	Applications of sensor and	12	02	04	06	12	
	transducers						
VI	Signal conditioning and Data acquisition	06	02	02	06	10	
	system						
	Total	64	12	22	36	70	

Legends: R=Remember, U=Understand, A=Apply and above (Bloom's Revised taxonomy)

<u>Note</u>: This specification table provides general guidelines to assist student for their learning and to teachers to teach and assess students with respect to attainment of UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may vary from above table

9. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related *co-curricular* activities which can be undertaken to accelerate the attainment of (he various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- i. Prepare the survey report on the applications of different types of number system and code converters used in the design of digital system.
- j. Compare technical specifications and applications of various types of memory, PLDs, CPLDs and Prepare report.
- k. Test digital ICs using various testing equipment like digital IC tester. Digital multimeter etc.
- 1. Give seminar on any course relevant topic.
- m. Conduct library / internet survey regarding different data sheet and manuals.
- n. Prepare power point presentation on digital circuits and their applications.
- o. Undertake a market survey of different digital ICs required for different applications.
- p. Search for video / animations / power point presentation on internet for complex topic related to the course and make a presentation.

10. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various learning outcomes in this course:

- o. Massive open online courses (MOOCs) may be used to teach various topics/sub topics.
- p. '*L' in item No. 4* does not mean only the traditional lecture method, but different types of teaching methods and media that are to be employed to develop the outcomes.
- q. About *15-20% of the topics/sub-topics* which is relatively simpler or descriptive in nature is to be given to the students for *self-directed learning* and assess the development of the COs through classroom presentations.
- r. With respect to item No. 9, teacher need to ensure create opportunities and provisions for *co-curricular activities*.
- s. Guide student(s) in undertaking micro-projects.
- t. PPTs/Animations may be used to explain the construction and working of electronic circuits.u. Guide students for using data sheets / manuals.

DEPM

11. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project is group-based. However, in the fifth and sixth semesters, it should be preferably be *individually* undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should *not exceed three*. The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than *16* (*sixteen*) *student engagement hours* during the course. The student ought to submit micro-project by the end of the semester to develop the industry-oriented COs. Micro project report may be of four to five pages.

A suggestive list of micro-projects is given here. Similar micro-projects could be added by the concerned faculty:

- a. **Analog and digital meters:** Build and test voltmeter (0-10V, 1mA, 500Ohms) using PMMC.
- b. Analog and digital meters: Build and test ammeter (0-100 mA) using PMMC.
- c. **Signal conditioning:** Design D.C. signal conditioning circuit using Wheatstone bridge and implement that on PCB.
- d. **Function Generator:** Build and Test function generator using IC 8038(sine wave, square wave, triangular wave up to 100 kHz) on the PCB.
- e. **Oscilloscope Function generator, Spectrum analyzer:** Survey of different electronic instruments.
- f. (Use structure and other features of 'Electronic Measurement and Instrumentation' to develop above listed applications).

S. No.	Title of Book	Author	Publication
1	Modern Electronic Instrumentation and Measurement Techniques	Helfrick, A. D. Cooper, W.D.	Pearson Eduction India, 1 st Edition, New Delhi, 2015, ISBN-13: 9789332556065
2	Electronic Instrumentation	Kalsi, H.S.	McGraw Hill, New Delhi,2010 ISBN: 13- 9780070702066
3	Electronic Instrumentation and Measurements	David, A. Bell	Oxford University Press. New Delhi,2013, ISBN: 10:0-19-569614-X
4	Electrical and Electronic Measurements and Instrumentation	Sawhney, A. K.	Dhanpat Rai & Sons, New Delhi ,2005, ISBN: 13-9788177000160

12. SUGGESTED LEARNING RESOURCES

13. SUGGESTED SOFTWARE/LEARNING WEBSITES

- a. www.mykIassroom.com/Engineering.../Electronics-&-1nstrumentation-Engg.-(EIE)
- b. www.en.wikipedia.org/wiki/List_of_electrical_and_electronic_measuring_equipment
- c. www.en.wikipedia.org/wiki/Electronic_test_equipment
- d. www.en.wikibooks.org/wiki/Electronics/Measuring_Instruments

Semester III

Program Name	:	Diploma in Electronics Production and maintenance
Program Code	:	DEPM
Semester	:	Third
Course Title	:	Principles of Electronics Communication
Course Code	:	21D35

1. RATIONALE

In the twenty-first century digital verbal exchange performs a vital function in each issue of human lifestyles. Diploma students (also known as technologists) should cope with the numerous electronic conversation circuits whilst preserving electronic conversation structures. The examination of fundamental operating principles and handling of diverse electronics communication system will assist them to troubleshoot and keep electronics communication systems used for diverse sort of communication. This path is developed in one of these ways that, students will be capable of observing the area information to remedy extensive conversation engineering software issues in a digital communication engineering subject.

2. COMPETENCY

The aim of this course is to help the student to attain the following industry identified competency through various teaching learning experiences:

• Principle of Electronics Communication

3. COURSE OUTCOMES (COs)

The theory, practical experiences and relevant soft skills associated with this course are to be taught and implemented, so that the student demonstrates the following industry-oriented COs associated with **the above-mentioned competency:**

- a. Use relevant frequency range for different communication systems.
- b. Use relevant modulation technique for the specified application.
- c. Maintain transmitter and receiver circuits of AM and FM.
- d. Use relevant media for transmission and reception of signals.
- e. Use relevant type of antenna for various applications.

4. TEACHING AND EXAMINATION SCHEME

Teac Sche	ching eme		Credit (L+T+P)		Examination Scheme											
			Ì		Theory Practical											
L	Т	Р		Paper	Paper ESE PA Total			al	ES	E	P	'A	To	otal		
				Hrs.	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min
4	-	2	6	3	70	2s	30*	12	100	40	25	10	25	10	50	20

(*): Under the theory PA, out of 30 marks, 10 marks are for micro-project assessment to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T - Tutorial/Teacher Guided Theory Practice; P - Practical; C - Credit, ESE - End Semester Examination; PA - Progressive Assessment

5. SUGGESTED PRACTICALS/ EXERCISES

The practical's in this section are PrOs (i.e. sub-components of the COs) to be developed and assessed in the student for the attainment of the competency.

Semester III

S. No.	Practical Outcomes (PrOs)	Unit' No.	Approx. Hrs. Required
1	Use simple wires, switches and LEDs to establish simplex and half duplex communication link	Ι	02
2	Use simple wires, switches and LEDs to establish full duplex communication link	Ι	02
3	Observe the AM modulated waveforms generated for different carrier frequencies.	II	02
4	Generate AM wave and measure its modulation index.	II	02*
5	Use any simulation software to generate AM wave.	II	02
6	Use voltage-controlled oscillator to generate FM wave and measure the frequency deviation.	II	02
7	Generate FM wave and measure its modulation index.	II	02
8	Use any simulation software to generate FM wave.	II	02*
9	Use AM demodulator circuit to detect the received AM signal.	III	02*
10	Use IC 566 to generate FM waveform and measure modulation index	III	02
11	Use IC 564 / IC 565 for FM demodulation and trace it's input and output waveforms.	III	02
12	 Use any simulation software to measure 1. MUF for the given critical frequency and incident angle. 2. Radio horizon for given height of transmitting and receiving antenna 	IV	02*
13	Use field meter to plot the radiation pattern of the given dipole antenna.	V	02*
14	Use field meter to plot the radiation pattern of given Yagi-Uda antenna.	V	02
15	Use any simulation software to plot radiation pattern of the given type of antenna.	V	02
	Total		30

Note

- i. A suggestive list of **PrOs** is given in the above table. More such PrOs can be added to attain the COs and competency. A judicial mix of minimum 12 or more practical need to be performed, out of which, the practical's marked as '*' are compulsory, so that the student reaches the 'Precision Level' of Dave's 'Psychomotor Domain Taxonomy' as generally required by the industry.
- ii. The 'Process' and 'Product' related skills associated with each PrO is to be assessed according to a suggested sample given below:

S. No.	Performance Indicators	Weightage in %
1	Preparation of experimental set up	20
2	Setting and operation	20
S. No.	Performance Indicators	Weightage in %
3	Safety measures	10
4	Observations and Recording	10
5	Interpretation of result and Conclusion	20

Semester III

6	Answer to sample questions	10
7	Submission of report in time	10
	Total	100

The above PrOs also comprise of the following social skills/attitudes which are Affective Domain Outcomes (ADOs) that are best developed through the laboratory/field-based experiences:

- a. Follow safety practices.
- b. Practice good housekeeping.
- c. Demonstrate working as a leader/a team member.
- d. Maintain tools and equipment.
- e. Follow ethical practices.

The ADOs are not specific to any one PrO, but are embedded in many PrOs. Hence, the acquisition of the ADOs takes place gradually in the student when s/he undertakes a series of practical experiences over a period of time. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- 'Valuing Level' in Is' year
- 'Organizing Level' in 2nd year
- 'Characterizing Level' in 3rd year.

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

The major equipment with broad specification mentioned here will usher in uniformity in conduct of experiments, as well as aid to procure equipment by authorities concerned.

S- No.	Equipment Name with Broad Specifications	PrO. S. No.
1	Cathode Ray Oscilloscope Dual Trace 20Mhz,) Mega Ω Input Impedance	3 to 12
2	RF signal generator with Wide frequency range 100 KHz to 150 MHz Fine	3 to 12
	frequency adjustment by calibrated dial built in audio frequency generator	
3	DSO with Bandwidth: 50/100MHz TFT Color LCD Dual Channel Real Time	3 to 2
	Sampling: 1 G Sa/s Equivalent Sampling 25GSa/s Memory 1M pts 10 Waveforms	
	& 10 Setups can be stored	
4	Regulated power supply: DC Supply Voltages Dual DC: 2 x 0 - 30V;0-2A	1-12
	Automatic Overload (Current Protection) Constant Voltage & Constant Current	
	Operation	
5	AM trainer kit for DSB/SSB AM modulation and demodulation	3,4
6	Digital Multimeter: 3 1/2-digit display, 9999 counts digital multimeter	3 to 12
	measures: V _{ac} , V ^(1000V max) , A _{dc} , A _{ac} (10-amp max), Resistance (0 -	
	100 MC2), Capacitance and Temperature measurement	
7	FM trainer kit for FM modulation and demodulation	3
8	Trainer kit for FM modulator using IC566: AC Source: 600Hz to 2.5 KHz FM	6.7.10, 11
	Modulator: VCO Test Points circuits engraved on front panel with transparent rear	
	panel	
9	Trainer kit for FM demodulator using IC 564: AC Source: 600Hz to 2.5 KHz.FM	12
	Demodulator :PLL Test Points	
10	Antenna trainer kit: for dipole and yagi-uda antenna, mobile antenna,	14,15
	omnidirectional antenna, horn antenna and other common type of antennas	
11	Software for program : SCILAB.MATLAB ,TINA PRO.	5,8,13,16
12	Simulation software suitable for communication experiments .	5,8, 13,16

DEPM

7. UNDERPINNING THEORY COMPONENTS

The following topics/subtopics should be taught and assessed in order to develop UOs in cognitive domain for achieving the COs to attain the identified competency.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics		
	(in cognitive domain)	1 1 701 1 . 01 . 1		
Communic ation	 1 a. Interpret the working of the given block of basic electronic communication system. 1b .Identify the relevant frequency band of electromagnetic spectrum for the specified application with justification. 1 c. Compare features of the given types of transmission modes. Id, Differentiate properties of the given types of noise. 2a. Interpret necessity of the given 	 1.1 The elements of basic electronic communication system 1.2 Electromagnetic spectrum 1.3 Transmission modes: Simplex, half duplex and full duplex, Synchronous and Asynchronous 1.4 Sources of Noise (internal and external), signal to noise ratio 		
AM and FM Modulatio n	 type of modulation technique . 2b.Compare the working of the given type of AM generation technique. 2c. Describe with sketches the given parameters of AM signal. 2d. Calculate modulation index and power distributions of the given AM signal. 2e. Describe with sketches the specified parameters of FM and PM signal. 2f. Determine the modulation index of given FM signal. 	 2.1Need for modulation 2.20Types of modulation techniques Amplitude Modulation: Mathematical representation of amplitude modulated wave, modulation index, bandwidth requirement, representation of AM signal in time and frequency domain, types of AM with respect to frequency spectrum (DSB, SSB and VSB), Power relations in AM wave 2.3 Frequency Modulation: representation of FM signal in time domain and frequency domain , frequency deviation ratio, modulation index(P), mathematical representation of FM, bandwidth requirement, types of frequency modulation (NB and WBFM) 2.4 Phase Modulation 		
Unit- III	3a. Explain with sketches the working of	3.1 Generation of AM		
Transmitt		3.2 Block diagram of AM super heterodyne		
ers and	technique.	receiver and its working with		
	receiver. 3c. Explain with sketches the given types of AM demodulation technique. 3d. Explain with sketches principle of	3.3 Demodulation of AM signal: Diode detector and practical diode detector3.4 Automatic gain control and its types.		
Unit-IV	4a. Describe the properties of the given	4.1 Concept of propagation of radio waves		
Wave	types of electromagnetic waves.	4.2 Ground Wave propagation Sky wave:		
	4b. Describe with sketches propagation	Ionospheric layers, Concept of actual height		

DEPM		Semester III
	 4c. Describe properties of the specified Ionospheric layer. 4d. Explain parameters and properties of the given types of wave propagation. 4e. For the given application, identify the type of wave propagation to be used with justification. 	 distance. skip zone, concept of fading, maximum usable frequency, multiple hop sky wave propagation 4.2 Space Wave propagation: line of sight, multipath space wave propagation , optical and radio horizon, shadow zones 4.3 Duct propagation (microwave space- wave propagation) 4.4 Troposphere scatter propagation.
Unit- V Antennas	 5a. Explain with sketches the working principle of the given type of antenna. 5b.Compare with sketches working of the given type of antenna on the basis of radiation pattern. 5c. Explain antenna parameters of the given type of antenna. 5d. Choose type of antenna required with broad specification for the given applications. 	 5.1 Antenna fundamentals :Resonant antenna and Non-resonant antennas 5.2 Antenna parameters : Radiation pattern polarization, bandwidth, beamwidth, antenn resistance, directivity and power gain, antenna gai 5.3 Dipole antenna: Half wave dipole antenna (Resonant Antenna) and its Radiation pattern. Folded dipole antenna and its radiation pattern, Radiation pattern for Dipole Antenna of different length 5.4 Loop antenna. Telescopic antenna, Yagi-Uda antenna. Micro wave antenna - Dish antenna. Horn antenna and Micro-strip patch antenna .rectangular, square and circular (Structure, radiation pattern and application of antennas)

Note: To attain the COs and competency, above listed UOs need to be undertaken to achieve the 'Application Level' and above of Bloom's 'Cognitive Domain Taxonomy'.

8. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit	Unit Title	Teaching	Distribution of Theory Marks			
No.		Hours	R	U	А	Total
			Level	Level	Level	Marks
Ι	Basics of Electronic Communication	08	4	4	4	12
II	AM and FM Modulation	16	4	6	8	18
III	Transmitters and Receivers	16	2	6	6	14
IV	Wave propagation	10	4	4	6	14
V	Antennas	14	4	4	4	12
	Total		18	24	28	70

Legends: R^ *Remember, U=Understand. A-Apply and above (Bloom's Revised taxonomy)* <u>Note:</u> *This specification table provides genera! guidelines to assist student for their learning and to teachers to leach and assess students with respect to attainment of UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may vary from above table.*

9. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

a. Prepare chart for electromagnetic spectrum.

- DEPM
- b. Give seminar on any relevant topic related to electronic communication medium.
- c. Library survey regarding different communication books and manuals.
- d. Prepare power point presentation for recent communication applications.
- e. Undertake **a** market survey of different communication devices.
- f. Visit radio transmitter station.
- g. Visit auditorium near your campus and make layout of PA system.

10. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various learning outcomes in this course:

- a. Massive open online courses (MOOCs) may be used to teach various topics/sub topics.
- b. '*L*' *in item No.* 4 does not mean only the traditional lecture method, but different types of teaching methods and media that are to be employed to develop the outcomes.
- c. About *15-20% of the topics/sub-topics* which is relatively simpler or descriptive in nature is to be given to the students for *self-directed learning* and assess the development of the COs through classroom presentations (see implementation guideline for details).
- d. With respect to item No.10, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- e. Guide student(s) in undertaking micro-projects.
- f. Demonstrate students thoroughly before they start doing the practice,

g Encourage students to refer different websites to have deeper understanding of the subject.

- h. Observe continuously and monitor the performance of students in Lab.
- i. Arrange visit for students to make clear certain communication concepts.

11. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project is group-based. However, in the fifth and sixth semesters, it should be preferably be *individually* undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should *not exceed three*.

The micro-project could be industry application based, internet-based, workshop-based, laboratorybased or field-based. Each project should encompass two or more COs which are in fact, an integration of POs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than 16 (sixteen) student engagement hours during the course. The student ought to submit micro-project by the end of the semester to develop the industryoriented COs. Micro project report may be of four to five pages.

A suggestive list of micro-projects is given here. Similar micro-projects could be added by the concerned faculty:

A suggestive list of micro-projects is given here. Similar micro-projects could be added by the concerned faculty:

- a. **Modulation:** Build a circuit for modulation using IC MC1496/8038 on general purpose PCB and prepare the report.
- b. **FM transmitter:** Build a circuit on general purpose PCB for FM transmitter using IC 8038/ transistor BF549 and prepare a report.
- c. Find different channels frequencies associated with Am and FM stations.
- d. Antenna: Simulate a microstrip patch antenna for frequency 2.4GHz frequency using HFSS (high frequency structure simulator) software.
- e. Tuning of IFT: Build a circuit on general purpose PCB for tuning 1FT at 455KFIz

S. No.	Title of Book	Author	Publication
1	Electronic communication system: Fundamentals Through Advanced	Tomasi W.	Pearson Education India, New Delhi, 4 ^{lh} Edition, 2001, ISBN: 9780130221254
2	Audio and video systems principals, maintenance and troubleshooting	Gupta R.G.	Tata McGraw Hill, New Delhi, 2010, ISBN : 9780070699762
3	Principles of Electronics Communication system	Frenzel Louis E.	Mc-Graw Hill 5 ¹ " Edition, New Delhi,2007, ISBN : 9780073222783
4	Antenna Theory: Analysis and Design	Constantine A. Balanis	Wiley-Student edition India, New Delhi, 2015-16, ISBN: 9788126524228
5	Electronic Communication Systems	Kennedy George; Davis Bernard; Prasanna SRM	Mc-Graw Hill 5 th Edition, New Delln',2011, ISBN : 9780071077828

12. SUGGESTED LEARNING RESOURCES

13. SUGGESTED SOFTWARE/LEARNING WEBSITES

- a. www.antenna-theory.com/basics/main.php
- b. www.explainthatstuff.com/antennas.html
- c. www.circuitdiagram.org/am-radio-receiver-with-mk484.html
- d. www.circuitstoday.com/single-chip-fm-radio-circuit

Program Name: Diploma in Electronics Production and Maintenance Program Code: DEPM Duration of Program: 6 Semesters	ion Schel	National Institute of Electronics & Information Technology, Aurangabad Teaching and Examination Scheme for Diploma in Electronics Production and Maintenance	ation 1	fechn in Ele	ology, A	Produc	bad tion and	Mainte	enance										
Program Code: DEPM Duration of Program: 6	a in Elec	tronics Pr	oducti	OD AD	d Main	enance													
Duration of Program: 6									With E	Effect fr	With Effect from Academic Year: 2021-2022	ademic	Year:	2021-20	022				
Semester: Fourth	Semeste	S		1					Durat	ion: 16	Duration: 16 Weeks								
	-		Teaching	hine															
	Ab	Suh	Scheme	me		Exam	Examination	Scheme											Grand
N Course Title	viat	code	-		(L+T	Theory	A						Practical	fical					Total
	ion		L	L P	4	Paper	ESE	Min	PA	Min	Total	Via	ESE	Min	PA	Min	Total	Win	
Linear Integrated Circuit	LIC	21D41	4	1	9	3	70	28	30	12	100	40	25	10	2	10	50	20	150
Consumer Electronics	L CE	21D42	3	1	5	3	70	28	30	12	100	40	25	10	23	10	50	20	150
Microcontroller and Applications	C MI	21D43	4	5	9	e	70	28	30	12	100	40	25	10	25	10	50	20	150
Power Electronics	PEL	21D44	3	2	5	3	70	28	30	12	100	40	25	10	22	10	50	20	150
Digital Communication Systems	s DC	21D45	4	4	8	e	70	28	30	12	100	40	25	10	ĸ	10	50	20	150
Maintenance of Electronics Equipment and EDA tool Practices	ME DA	21D46		4	4	,	,	,	,	,	,	,	33	10	ĸ	01	50	20	50
Total			18 0	16	34	1	1	1	1	1	1	1	1	1	1	1	1	1	1
nt C Ty al cyia cyia der nder n du	r Week: Semester Semester ut of 30 NLY Pra	34 Hrs. minutes ea Exam, PA marks, 10 1 assessment ctical Exar	ch. - Prog marks a of the ninatio	ressive are for cogni	Medium of Instruction: English e Assessment, L - Lectures, T - r micro-project assessment to fi titive domain LOs required for the e PA has two parts, marks for :	of Instru- ment, L yroject as iain LOs two part	ction: E - Lecture ssessmer required s, marks	English res, T - Tutorial, P - Practical ant to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to of for the attainment of the COs. s for : (1) Practical Part - 60% of total marks (ii) Micro-Project Part - 40% of total marks.	utorial, ilitate in attainn	P - Prac itegratic ient of t cal Part	ctical m of CC he COs	Ds and t	the rema marks (i	uining 2 i) Micr	0 marks o-Proje	s is the ct Part -	average 40% of	of 2 tes (total n	tts to be tarks.
Candidate remaining absent in practical examination will be declare as A candidate was present will not be processed or carried forward.	ning abse esent wil	ent in practi I not be pro	ical exi	amina 1 or ca	tion will urried for	be decla ward.	tre as Ab	bsent in Mark List and has to reappear for examination. The marks of the part for which	Mark L	ist and l	has to re	appear	for exa	minatio	n. The r	narks o	f the par	t for w	E
				M	Ø	(Jee	4			C	0.0	:			So	rice	7	10 01	Tel.
TANK ADENICS	N	Elle Contraction	Dr Bab	Depe	Desartment of Electroni abasahebythbedkar Marathwada	ent of Electronics bedkar Marathwada Univ	ctronic hwada U	ics University	1	1 Son	t	1.	Z	-	/ mid	dont +	and a	utiten/	Aurangabad (WS)
NIELIT, Aurangabed.)	a function of the							Dept.	Dept. of Electronics & TELE	tronics	8 9518	20	He attentate	IIC.	ON T Notion
				-								Govt	Govt. College of Engineering	e of En	i najili b		Aurangaua		

)

Semester IV

Program Name	:	Diploma in Electronics Production and maintenance
Program Code	:	DEPM
Semester	:	Fourth
Course Title	:	Linear Integrated Circuit
Course Code	:	21D41

1. RATIONALE

IC technology needs the basics of Integrated Circuits for college kids regarding the appliance and special function ICs. The elemental knowledge about electronic components for successful handling of commercial problems. Operational Amplifier (Op-Amp) is that the most versatile Linear microcircuit (IC) wont to develop various applications in electronic circuits and equipment. Hence this course is meant to develop the talents to create, test, diagnose and rectify the Op-Amp based electronic circuits. This course deals with various aspects of Linear Integrated circuits utilized in various industrial, consumer and domestic applications.

2. COMPETENCY

The aim of this course is to assist the scholar to achieve the subsequent industry identified competency through various teaching learning experiences: Maintain electronic circuits consisting of Linear Integrated Circuits.

3. COURSE OUTCOMES (COs)

The theory, practical experiences and relevant soft skills related to this course are to be taught and implemented, in order that the scholar demonstrates the subsequent industry oriented COs related to the above mentioned competency:

- a. Use op-amp in linear circuits.
- b. Use various configurations of Op-Amp for different applications.
- c. Troubleshoot various linear applications of Op-Amp for the given specifications.
- d. Maintain filters and oscillators used in various electronic circuits.
- e. Troubleshoot specified applications using various linear ICs.

f. Learn about the basic concepts for the circuit configuration for the design of linear integrated circuits and develops skill to solve engineering problems.

	achi hem	0		Exam	inati	on Sch	eme									
					Т	heory							Practi	cal		
L	Т	Р	Credit (L+T+	Pape Hrs.	ESE		PA		Tota	al	ES	SE .	PA		Tota	1
			P)		Ma	Min	Ma	Min	Ma	Min	Ma	Mi	Max	Min	Ma	Mi
					X	191111	X	191111	X	191111	X	n	IVIAN	191111	X	n
4	-	2	6	3	70	28	30	12	100	40	25	10	25	10	50	20

4. TEACHING AND EXAMINATION SCHEME

(*): Under the theory PA, Out of 30 marks, 10 marks are for micro-project assessment to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessment of the UOs required for the attainment of the Cos. Legends: L-Lecture; T— Tutorial/Teacher Guided Theory Practice; P -. Practical; C — Credit ESE - End Semester Examination; PA - Progressive Assessment.

```
Semester IV
```

5. SUGGESTED PRACTICALS/ EXERCISES

The tutorials in this section are sub-components of the COs to be developed and assessed in the student to lead to the attainment of the competency.

Sr. No.	Tutorials	Unit No.	Approx. Hrs. Required
1	Use relevant instruments to measure the differential input resistance, input offset voltage, and Output offset voltage and common mode rejection ratio (CMRR) of IC741.	Ι	2
2	Measure the Output voltage Swing parameter of Op-Amp IC 741.	Ι	2
3	Use relevant instruments to determine gain of the Inverting amplifier and Non Inverting amplifier consist of 1C741.	II	2
4	Build/ Test adder and subtractor circuit consist of IC 741	II	2
5	Build/Test Integrator circuit consist of IC741	II	2
6	Build/Test differentiator circuit consist of IC741.	II	2
7	Build/Test Voltage to Current converter and Current to Voltage converter circuit consist of IC 741.	III	2
8	Build/Test comparator circuit consist of IC741 as Zero crossing detector and active positive peak detector.	III	2
9	Build/Test Instrumentation amplifier circuit using IC LM324.	III	2
10	Use relevant instruments to measure the bandwidth and cutoff frequency of the given first order low pass Butterworth filter.	IV	2
II	Use relevant instruments to measure the bandwidth and cutoff frequency of the given first order high pass Butterworth filter.	IV	2
12	Use relevant instruments to measure the cutoff frequency of the given notch filter.	IV	2
13	Use relevant instruments to measure the frequency of oscillation of the given RC Phase shift oscillator circuit using IC741.	IV	2
14	Measure the frequency of oscillation of the given wien bridge oscillator circuit using IC741.	IV	2
15	Build/Test astable multi-vibrator using IC555 for the given specifications.	V	2
16	Build/Test mono-stable multi-vibrator using 1C555 for the given specifications.	V	2
Tota	1		32

Note: -

- i. A suggestive list of PrOs is given in the above table. More such PrOs can be added to attain the COs and competency. A judicial mix of minimum 12 or more practical need to be performed, out of which, the practical's marked as `*' are compulsory, so that the student reaches the 'Precision Level' of Dave 's 'Psychomotor Domain Taxonomy' as generally required by the industry.
- *ii.* The 'Process' and 'Product' related skills associated with each PrO is to be assessed according to a suggested sample given below:

Sr. No.	Performance Indicator	Weightage in %
1	Preparation of experimental set up	20
2	Setting and operation	20

Semester IV

3	Safety measures	10
4	Observations and recording	10
5	Interpretation of result and conclusion	20
6	Answer to sample questions	10
7	Submission of report in time	10
TOTAL		100

The above PrOs also comprise of the following social skills/attitudes which are Affective Domain Outcomes (ADOs) that are best developed through the laboratory/field-based experiences:

- a) Follow safety practices.
- b) Practice good housekeeping.
- c) Demonstrate working as a leader/a team member.
- d) Maintain tools and equipment.
- e) Follow ethical practices.

The ADOs are not specific to any one PrO, but are embedded in many PrOs, Hence, the acquisition of the ADOs takes place gradually in the student when s/he undertakes a series of practical experiences over a period of time. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- 'Valuing Level' in 1st year.
- 'Organising Level' in 2nd year.
- 'Characterising Level' in 3rd year.

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED -

The major equipment with broad specification mentioned here will usher in uniformity in conduct of experiments, as well as aid to procure equipment by authorities concerned.

Sr.	Equipment Name with Broad Specifications	Exp. S.
No		No.
1	Variable DC power supply 0- 30V, 2A	ALL
2	Cathode Ray Oscilloscope Dual Trace 30Mhz, 1MegaQ Input	2,3,5,6,8,9,10,
	Impedance	11,12,16,
	Digital Storage Oscilloscope 25MHz/40MHz/60MHz/100MHz	2,3,5,6,8,9,10,
3	bandwidth,500MS/s to 1 GS/s real time sample rate.	11,12,13,14,15
	bandwiddi, 500115/3 to 1 05/3 tear time sample face.	,16
4	Function Generator 0-2 MHz with Sine, square and triangular	2,3,5,6,8,9,10,
	output with variable frequency and amplitude range.	11,12,13,14,15
		,16
5	Digital Multimeter : 4 1/2 digit display, 9999 counts digital multi	ALL
	meter measures: V11 C, V [^] (1000V max), Adc, Aac (10 amp	
	max) Resistance (0-100 MQ)	
	Electronic Work Bench : Bread Board 840 1000 contact point,	
6	Positive and Negative power rails on opposite side of the board,	ALL
	connecting wires,	

7. UNDERPINNING THEORY COMPONENTS

The following topics/subtopics is to be taught and assessed in order to develop UOs for achieving the COs to attain the identified competency, More UOs could be added.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	in cognitive domain)	
Unit-I Fundamentals of Operational Amplifier (Op -Amp)	 1.a Describe with sketches the function of the given block(s) of the Op-Amp. 1b. Select the parameters to be considered for the given applications of the Op-Amp with justification. 1c. Explain with sketches the working of the given type of Op-Amp configuration. Id. Describe with sketches the procedure to troubleshoot the given Op-Amp circuit. 	 1.1 Operational Amplifier, Equivalent Circuit, Circuit symbols and Terminals. 1.2 Op-Amp IC 741 pin diagram and pin function; Op-Amp parameters: Input offset voltage, Input offset current, Input bias current. Differential input resistances, input capacitances, input voltage range, offset voltage adjustment range, common mode rejection ratio (CMRR), supply voltage rejection ratio, slew rate, large signal voltage range, supply voltage, supply current, Current, Output voltage Swing, Gain Bandwidth Product, Output Short Circuit Current. 1.3 Transfer Characteristic- Ideal and Practical Voltage Transfer Curve. 1.4 Op-Amp Configuration: Open Loop and Closed loop. 1.5 Virtual Ground Concept.
Unit- II Applications of Operational Amplifier	 2a. Explain with sketches the working of the given types of modes of Op-Amp operation. 2b. Calculate the output voltage of the given arithmetic circuit consist of Op-Amp. 2c. Select the relevant Op-Amp configuration for the given application with justification. 2d. Calculate the given parameter for the specified Op-Amp configuration. 	 2.1 Closed Loop configuration, modes of operations: Inverting and Non- Inverting. 2.2 Differential amplifier, Unity Gain Amplifier (voltage follower). 2.3 Arithmetic operations: Addition, Scaling, Averaging, Subtraction Integrator, Differentiator. 2.4 Concept of frequency compensation of Op-Amp and offset nulling.

DEPM		Semester IV
Unit- III Linear Applications of Op-Amp	 3a. Explain with sketches the working of an Instrumentation amplifier for the given application. 3b. Choose relevant Op-Amp converter for the given applications with justification. 3c. Select the Op-Amp based comparator for the given application with justification. 3d. Explain with sketches working of Op-Amp for the given application. 	 3.1 Op-Amp as an Instrumentation amplifier: Working, Derivation of output voltage, IC LM 324- Pin Configuration, specification and application. 3.2 Voltage to Current converter with Floating and Grounded load. 3.3 Current to Voltage converter. 3.4 Sample and Hold Circuit 3.5 Logarithmic and Antilogarithmic amplifier using diodes. 3.6 Analog Divider and analog multiplier. 3.7 Comparators: IC LM710 a. Zero Crossing Detector b. Schmitt Trigger c. Window Detector d. Phase Detector e. Active Peak Detector
Unit-IV Filters and Oscillators	 4a. Explain working of the given type of filter with sketches. 4b. Explain with sketches procedure to identify the given type of filter based on frequency response. 4c. Calculate cut-off frequency for the given type of filter. 4d. Prepare the specifications of the given type of filter with justification. 4e. Explain with sketches the working principle of the given type of oscillator. 4f. Determine the frequency of oscillation of the given type of oscillator with frequency Response. 4g. Describe with sketches the procedure to troubleshoot the 	 4.1 Filter and its classification. 4.2 Merits and demerits of active filters over passive filters. 4.3 Filter characteristic terms order of filter, cut off frequency Pass band. Stop band, Centre frequency, Roll off rate, Bandwidth, Q factor. 4.4 Filter types and its Frequency Response: Low pass (First Order an second order), High Pass (First Order and second order), Band pass (Wide and Narrow), Band Reject (Wide and Narrow), All Pass Filter. 4.5 Oscillator types using IC 741: Phas shift oscillator, Wein Bridge oscillator.

DEPM		Semester IV
Unit -V Specialized IC Applications	 5a. Explain with sketches the working of IC555 for the given application. 5b. Calculate the duty cycle of the given type of multivibrator. 5c. Explain with sketches the working of the given blocks of PLL. 5d. Calculate lock range and capture range of the given PLL. 5e. Describe with sketches the procedure to troubleshoot the given circuit with IC. 	 5.1 IC 555: Block Diagram of Timer, Pin Diagram and functions, Astable. Monostable, Bistable multivibrator. Schmitt trigger and Voltage Control Oscillator. 5.2 Phase Lock Loop (PLL): Block diagram and its operation, lock range and capture range. 5.3 Applications of PLL: PLL as a Multiplier, FM Demodulator. 5.4 IC 565: Pin diagram and function.

Note: To attain the COs and competency, above listed UOs need to be undertaken to achieve the 'Application Level ' and above of Bloom's 'Cognitive Domain Taxonomy

8. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit	Unit Title	Teaching	Distr	ribution of	f Theory	Marks
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Fundamentals of Operational	10	2	2	4	8
II	Applications of Operational Amplifiers	10	2	4	6	12
III	Linear Applications of Op- Amp	18	2	6	12	20
IV	Filters and Oscillators	16	2	6	10	18
V	Specialized IC Applications	10	2	4	6	12
Total		64	10	22	38	70

Legends: R=Remember, U=Understand, A—Apply and above (Bloom's Revised taxonomy) Note: This specification table provides general guidelines to assist student for their learning and to teachers to teach and assess students with respect to attainment of UOs, The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may vary from above table.

9. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a) Prepare journals based on practical performed in laboratory.
- b) Follow the safety precautions.
- c) Use various meters to test electronic equipment and component

d) Use datasheets of various Linear ICs.

DEPM

- e) Library /Internet survey of Op-Amp based linear circuits and their applications.
- f) Prepare power point presentation or animation for understanding different Op-Amp based circuit behavior.

10. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b) '*L' in item No. 4* does not mean only the traditional lecture method, but different types of teaching methods and media that are to be employed to develop the outcomes.
- c) About *15-20% of the topics/sub-topics* which is relatively simpler or descriptive in nature is to be given to the students for *self-directed learning* and assess the development of the COs through classroom presentations (see implementation guideline for details).
- d) With respect to item No. 9, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- e) Guide student(s) in undertaking micro-projects.
- f) Demonstrate students thoroughly before they start doing the practice.
- g) Encourage students to refer different websites to have deeper understanding of the subject.
- h) Observe continuously and monitor the performance of students in Lab.

11. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project AW group-based. However, in the fifth and sixth semesters, it should be preferably be individually undertaken to build up the skill and confidence in every student to become problem that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should *not exceed three*. The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than *16 (sixteen) student engagement hours* during the course. The student ought to submit micro-project by the end of the semester to develop the industry-oriented COs. Micro project report may be of four to five pages.

A suggestive list of micro-projects is given here. Similar micro-projects could be added by the concerned faculty

- a) Build Instrumentation Amplifier (IC LM324) for measurement of temperatures using thermocouple/RTD/Thermistor.
- b) Develop sound sensor using LM324 and microphone.
- c) Develop a shadow sensor circuit using IC741.
- d) Develop a temperature control dc fan using IC 741.
- e) Develop a remote control for switching devices (use IC 555 and TSOP 1738).
- f) Develop sequential timer circuit using multiple timers.

- g) Develop clap switch using op-amp.
- h) Develop water level controller using IC555.
- i) Develop a tone generator using IC 555.
- j) Develop PWM LED Dimmer/ Brightness Control using 1C555.
- k) Build frequency synthesizer using PLL IC565.
- 1) Develop FSK modulator and demodulator using PLL IC565
- m) Simulate using software LT spice/ P-spice / Scilab/ Matlab /Octave or any other open-source software linear IC applications

12. SUGGESTED LEARNING RESOURCES

Sr.	Title of Book	Author	Publication
No.			
1	Op-Amps and Linear Integrated Circuits	Mottershead. Allen	PHI Learning, New Delhi, ISBN 9788120301245
2	Electronic Devices and Circuit Theory	Boylestead Robert, Louis Neshelsky	Pearson Education.] Orn edition. New
3	The Art of Electronics	Paul Horowitz Winfield Hill	Delhi,2009, ISBN: 978-8131727003
4	Electronics Principles	Albert Paul Malvino, David J. Bates	Cambridge University Press, No. Delhi 2017 ISBN: 0070634246 · 9780070634244
5	Principles of Electronics	Mehta, V.K. Mehta. Rohit	McGraw Hill Eduction, NeiN Delhi. ISBN: 978-0070634244
6	Basic Electronic Engineering	Baru V Kaduskar R.,Gaikwad S.T,	S Chand and Company, Ram Nagar, New Delhi-
7	Fundamentals of Electronic Devices and	Bell, David	9788121924504
8	A text book of Applied Electronics	Sedha, R S	Dreamtech Press, New Delhi, 2015 ISBN: 9789350040126

13. SOFTWARE/LEARNING WEBSITES

- a) IC555 :-http://www.jamia-physics.net/lecnotes/lab/555.pdf
- b) IC 555 data sheet:-http://www.electroschematics.com/650/lm555-datasheet/
- c) Op-Amplifier basics:-https://www.khanacademy.org/science/electricalengineering/ee-amplifiers.
- d) Data sheet555:-www.engineersgarage.com/electronic-components/ne555-timer-ic-datasheet.
- e) Vide lecture Op-Amp:-http://freevideolectures.com/Course/3062/El^ctronics-I/37.
- f) Voltage control Oscillation- <u>http://www.electronicshub.org/voltage-controlled-oscillators-vco/</u>

Semester IV

Program Name	:	Diploma in Electronics Production & Maintenance
Program Code	:	DEPM
Semester	:	Fourth
Course Title	:	Consumer Electronics
Course Code	:	21D42

1. RATIONALE

The objective of teaching this subject is to offer students an thorough knowledge of varied electronic audio-video, microwave, washer, air-conditioner, camcorder et al. to develop skills to troubleshoot in systematic way knowledge so gained would also help in production units of those consumer gadgets or help the scholars to start out their own enterprises. Further this subject will introduce the scholars with working principles, diagram, main features of consumer electronics gadgets/goods/devices. This in-turn will develop in them capabilities of assembling, fault diagnosis and rectification during a systematic way. In developing Nations demand of consumer electronic appliances is increasing day by day. this needs sizable amount of technically trained man power within the relevant industries. Looking towards this need, in-depth knowledge for maintaining various consumer electronics appliances/equipment is important for diploma engineering pass out students.

2. COMPETENCY

The aim of this course is to assist the scholars to achieve the subsequent industry identified competency through various teaching learning experiences: Maintain various consumer electronic appliances/equipment.

3. COURSE OUTCOMES (COs)

The theory, practical experiences and relevant soft skills related to this course are to be taught and implemented, in order that the scholar demonstrates the subsequent industry oriented COs related to the above mentioned competency:

- a) To identify the various digital and analog signal.
- b) Describe various safety standards use in consumer electronics appliances
- c) Troubleshoot different types of microphones and speakers.
- d) Understand the principal and application of home appliances.
- e) Maintain audio systems.
- f) Analyze the composite video signal used in TV signal transmission.
- g) Troubleshoot color TV receivers.
- h) Maintain various consumer electronic appliances.

4. TEACHING AND EXAMINATION SCHEME

	achi hem	0		Exam	Examination Scheme											
			Credit	Theor	ry						Prac	tical				
L	Т	Р	(L+T+ P)	Pape r Hrs.	ESE		PA		Tota	al	ESE		PA		Tota	1
					Ma	Min	Ma	Min	Ma	Min	Ma	Mi	Max	Min	Ma	Mi

 DEPM
 Semester IV

					X		X		X		X	n				n
3	-	2	5	3	70	28	30	12	100	40	25	10	25	10	50	20

(*): Under the theory PA, Out of 30 marks, 10 marks are for micro-project assessment to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessment of the UOs required for the attainment of the COs, Legends: L-Lecture; T— Tutorial/Teacher Guided Theory Practice; P -. Practical; C Credit ESE - End Semester Examination; PA Progressive Assessment.

5. SUGGESTED PRACTICALS/ EXERCISES

The tutorials in this section are sub-components of the COs to be developed and assessed in the student to lead to the attainment of the competency.

Sr. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. Required
1	Test the performance of the given Microphone.	Ι	02
2	Test the performance of the given speaker.	Ι	02
3	Test output voltage and power of the Hi-Fi amplifier.	II	02
4	Identify any three different faults by voltage analysis method for Hi Fi Audio amplifier.	II	02
5	Select exact speed to write a CD for given type of data.	II	02
6	Install/Test the CD for given type of data.	II	02
7	Measure voltage levels to sketch composite video signal at different stages of TV receiver.	III	02
8	Use multi-meter to measure voltage at various test points of color TV receiver a) Chroma section b) Picture Tube.	IV	02
9	Use multi-meter to test various test points at Horizontal section of color TV receiver.		02
10	Use multi-meter to test voltages at various points of vertical section of the color TV receiver.	IV	02
11	Suggest the remedy for the Created fault and in the given color TV trainer kit for the following faults a) No color b) Red color only c) Green color only e) No sound.	IV	02
12	Suggest the remedy for the following faults in given color TV a) Fault in HSYNC section b) Fault in VSYNC section.	IV	02
13	Suggest the remedy for the following faults in color TV a) Fault in SYNC separator b) Fault in video amplifier.	IV	02
14	Test the various sections of LED television receiver.	IV	02
15	Test the various sections of LCD television receiver.	IV	02
16	Test the various functions of Camcorder	IV	02
17	Test the various features of the given type of printer.	V	02
Tota	1		34

Note: -

i. A suggestive list of PrOs is given in the above table. More such PrOs can be added to attain the COs and competency. A judicial mix of minimum 12 or more practical need to be performed, out of which, the practical's marked as `*' are compulsory, so that

the student reaches the 'Precision Level' of Dave 's 'Psychomotor Domain Taxonomy' as generally required by the industry.

ii. The 'Process' and 'Product' related skills associated with each PrO is to be assessed according to a suggested sample given below:

Sr. No.	Performance Indicator	Weightage in %
1	Preparation of experimental set up	20
2	Setting and operation	20
3	Safety measures	10
4	Observations and recording	10
5	Interpretation of result and conclusion	20
6	Answer to sample questions	10
7	Submission of report in time	10
Total		100

The above PrOs also comprise of the following social skills/attitudes which are Affective Domain Outcomes (ADOs) that are best developed through the laboratory/field based experiences:

- a. Follow safe practices
- b. Practice good housekeeping
- c. Practice energy conservation
- d. Demonstrate working as a leader/a team member
- e. Maintain tools and equipment

The ADOs are not specific to any one PrO, but are embedded in many PrOs, Hence, the acquisition of the ADOs takes place gradually in the student when s/he undertakes a series of practical experiences over a period of time. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- 'Valuing Level' in lst year.
- 'Organising Level' in 2nd year.
- 'Characterising Level' in 3rd year.

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED -

The major equipment with broad specification mentioned here will usher in uniformity in conduct of experiments, as well as aid to procure equipment by authorities concerned.

Sr.	Equipment Name with Broad Specifications	Exp. S.
No		No.
	Digital Multimeter: 3.5 digit with R, V, I measurements.	All
	Cathode Ray Oscilloscope: Bandwidth : DC-30 MHz dual	6,7,8
	channel, Rise time: 12 ns approx Accuracy : ± 3 % Input	
	Digital Storage Oscilloscope. Bandwidth : 50/100MHz TFT Color	6,7,8
	LCD Dual Channel Real Time Sampling: 1GS.	0,7,8
	Hi Fi amplifier system trainer.	3
	CD player trainer kit.	4
	Color TV receiver trainer kit.	5,6,7,8

D	DEPM	Semester IV
	LED television receiver trainer kit.	15
	LCD television receiver trainer kit.	16
	Color Pattern generator.	3-16
0	Camcorder.	17

7. UNDERPINNING THEORY COMPONENTS

The following topics/subtopics is to be taught and assessed in order to develop UOs for achieving the COs to attain the identified competency:

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	in cognitive domain)	
UNIT-I Audio Fundamentals	 la. Differentiate between Mono & Stereo amplifier with respect to the given No. of speaker, No. of amplifiers, quality of sound & application. lb. Describe the operating Principles of the given types of microphones. lc. Select the microphone for the given application. ld. Explain with sketches the working principle of the given type of speaker. le.Describe the troubleshooting procedure of the given 	 1.1 Basic characteristics of sound signal: level and loudness, pitch, frequency response fidelity, sensitivity and selectivity. 1.2 Audio Amplifiers: Mono, Stereo 1.3 Microphone: working principle, and characteristics, Types: carbon, condenser, crystal, electrets and tie clip 1.4 Speakers: working principle and characteristics, Types: electrostatic, dynamic, permanent magnet etc., woofers, tweeter and midrange, wireless.
	Microphone/speaker system.	1.5 Troubleshooting procedure
Unit-II Audio Systems	 2a. Describe with sketches the given section of CD player. 2b. Explain with sketches the given mechanism of the give type of CD player with justification. 2c. Explain with sketches the Working of the given section of Hi Fi amplifier. 2d. Describe working of the given section of PA system. 2e. Describe the troubleshooting procedure of the given section of the audio system. 	 2.1 Block diagram and operation of CD player, types of CD player. 2.2 Component used for CD mechanism: CD pick-up assembly, gear system, drive motors, CD lens 2.3 Block diagram of Hi Fi amplifier and its working 2.4 Public Address (PA) system: Block diagram and operation, Speaker impedance matching and characteristics 2.5 Home theatre system 2.6 Troubleshooting procedure of audio systems. 2.7 Block diagram and working of MP3

DEPM			Semester IV			
Unit- III Felevision Fundamentals and Fransmitter	 3a. Explain with sketches the Given type of scanning process. 3b. Describe with sketches the features of the given component of composite video signal. 3c. Explain with sketches the concept of the given type of modulation used in TV signal transmission with justification. 3d. Explain with sketches the given block of color TV transmitter. 3e. Describe the troubleshooting procedure of the given section of the color TV transmitter. 	 continuity, interlaces scanning, scanning periods - horizontal and vertical, vertical and horizontal resolution. 3.2 Vestigial sideband transmission, bandwidth for Colour signal, characteristics of colour signal, compatibility. 3.3 Colour theory, Grassman's law, additive and subtractive colour mixing Composite Video Signal - Pedestal height, Blanking pulse, colour burst, Horizontal sync pulse details, Vertical sync pulse details, equalizing pulses. 3.4 CCIR-B standards for colour signal transmission and reception, Positive and Negative modulation, merits and demerits of negative modulatio 3.5 Block diagram of Colour TV Transmitter. 3.6 Troubleshooting procedure of Colour TV Transmitter. 				
Unit- IV Television Receivers	 4a. Describe with sketches the function of the given block of a color TV receiver. 4b. Describe with sketches the function of the given section of PAL-D decoder. 4c. Compare the salient features of the given types of TV display. 4d. Explain with sketches the functions of the given block of DTH receiver. 4e. Describe the troubleshooting procedure of the given section of the color TV receiver. 	 4.1 Block diagram and colour TV receiver 4.2 Operation of PAL- 4.3 HDTV: Developmed MUSE System and 4.4 LCD/LED Technol working of LCD ar 4.5 Direct to Home Re Concept, receiver the Indoor and outdoor 4.6 Troubleshooting preserved 4.7 Block diagram and OLED. 4.8 Troubleshooting preserved 	D decoder ent of HDTV, NI NHK Broadcast logy: Principal ad LED TV. ceiver (DTH): block diagram, unit. ocedure of er systems. working of			

DEPM		Semester IV
Unit-V Consumer Electronic Appliances, Medical Electronics Equipment	 5a. Explain with sketches the working of the given section of the photocopier machine with its specifications. 5b. Prepare specification of a Microwave oven for the specific applications. 5c. Explain with sketches the working of the given section of the given type of washing machine. 5d. Explain with sketches the working of the given type of Digital camera. 5e. Describe the troubleshooting procedure of the given office/ home appliances. 	 5.1 Photocopier block diagram, working. 5.2 Microwave Oven: types, single chip controllers, block diagram, types, and wiring and safety instructions, electrical specifications. 5.3 Washing Machine: Block diagram of washing machine, electrical Specifications, types of washing machine: Automatic, semi- automatic. 5.4 Digital camera and cam coder: pick up devices, picture processing, and picture storage electrical specification. 5.5 Study of Ventilators, ECG machine, Digital Thermometer.

Note: To attain the COs and competency, above listed UOs need to be undertaken to achieve the 'Application Level ' and above of Bloom's 'Cognitive Domain Taxonomy.

8. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit	Unit Title	Teaching	Distribution of Theory Marks				
No.		Hours	R	U	Α	Total	
			Level	Level	Level	Marks	
Ι	Audio Fundamentals	06	02	04	02	08	
II	Audio Systems	08	04	04	04	12	
III	Television Fundamentals and TV Transmitter	10	06	06	04	16	
IV	Television Receivers	12	04	06	04	14	
V	Consumer Electronic	12	04	04	12	20	
Total		48	20	24	26	70	

9. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a. Prepare the survey report on the specifications and applications of different types of Microphone and speaker.
- b. Conduct market survey for latest home applications and compare specifications of reputed brands and prepare a report.
- c. Make visit to service center of electronic gadgets.
- d. Follow the safety precautions.
- e. Use various meters to test electric/electronic equipment and component.
- f. Library / Internet survey of electrical circuits and network.

g. Prepare power point presentation or animation for understanding different circuit's behavior.

10. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a. Massive open online courses (MOOCs) may be used to teach various topics/sub topics.
- b. (L' in item No. 4 does not mean only the traditional lecture method, but different types of teaching methods and media that are to be employed to develop the outcomes.
- c. About 15-20% of the topics/sub-topics which is relatively simpler or descriptive in nature is to be given to the students for self-directed learning and assess the development of the COs through classroom presentations (see implementation guideline for details).
- d. With respect to item No. 9, teachers need to ensure to create opportunities and provisions for co-curricular activities.
- e. Guide student(s) in undertaking micro-projects.
- f. Demonstrate students thoroughly before they start doing the practice.
- g. Encourage students to refer different websites to have deeper understanding of the subject.
- h. Observe continuously and monitor the performance of students in Lab.

11. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based. However, in the fifth and sixth semesters, it should be preferably be individually undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should not exceed three.

The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission.

A suggestive list of micro-projects are given here. Similar micro-projects could be added by the concerned faculty:

- a. Battery charger: Build a Battery charger for mobile phone. Prepare a report.
- b. FM Radio Receiver: Build FM radio receiver using IC TEA5591.
- c. Installation of DTH: Install DTH indoor and outdoor unit.
- *d.* Up Down counter: Build a circuit for 2digit Up Down counter at gates of a mall/Parking space. Prepare a report.
- e. Timer delay : Build a Timer delay using IC 89c51.
- *f.* Gas leakage detector: Develop a circuit for LPG gas leakage detector. Prepare a report.
- g. Smoke detector: Build a Smoke detector circuit for office/hospitals. Prepare a report.
- h. Temperature controller: Temperature controller using microcontroller. Prepare a report.

Semester IV

DEPM

- i. Temperature controller: Temperature controller using microcontroller. Prepare a report.
- j. Bar code reader: Build a Bar code reader circuit for super market/library.
- k. PA system: Develop a PA system for small conference hall.
- *l.* Light ON OFF control: Develop a circuit for Light ON OFF control using mobile app and Bluetooth. Prepare a report.

12. SUGGESTED LEARNING RESOURCES: -

Sr.	Title of Book	Author	Publication
No.			
1	Consumer Electronics	Bali, S.P.	Pearson Education India, Delhi, 2007; ISBN: 9332500738, 9789332500730
2	Audio video systems principles, maintenance and troubleshooting	Gupta, R.G.	McGraw Hill, New Delhi, India 2017, ISBN: 9780070699762
3	Audio video systems : principle practices and troubleshooting	, ,	Khanna Book Publishing Co. (P) Ltd., 2014 Delhi, ISBN:9788187522058
4	Modern Television Practice: Transmission, Reception and Applications	Gulati, R.R.	New Age International, New Delhi Year 2015, ISBN: 978-81-224¬3784-3
5	Television and video Engineering	Dhake, A.M	McGraw- Hill, New Delhi, India 2017, ISBN: 978-0074601051

13. SOFTWARE/LEARNING WEBSITES

- a. Microphone:-https://www.coursehero.com/file/18404103/7-Microphonesppt/
- b. Microwaveoven: www.calvin.edu/~pribeiro/courses/engr302/Samples/Microwave.ppt
- c. Photocopier machine:<u>www.youtube.com/watch?v=NxUbPE8RsiM</u>
- d. Television: https://www.slideshare.net/PravinShirke07/colour-television
- e. Colour TV theory: https://www.slideshare.net/slhallman/color-theory-533704

Semester IV

Program Name	:	Diploma in Electronics Production & Maintenance
Program Code	:	DEPM
Semester	:	Fourth
Course Title	:	Microcontroller and Applications
Course Code	:	21D43

1. RATIONALE

The study of microcontrollers in terms of architecture, software and interfacing techniques results in the understanding of working of microcontrollers and applications of microcontroller in electronic industries. Microcontroller is that the heart of the programmable devices. Microcontroller is employed in most the domestic, industrial, commodity and other high end products. Automation is employed in every field of engineering and microcontroller is inbuilt element of those systems and devices. Diploma engineers need to affect various microcontroller based systems and maintain them. This course is meant to develop the talents to take care of and solve the appliance problems associated with microcontrollers.

2. COMPETENCY

The aim of this course is to assist the scholars to achieve the subsequent industry identified competency through various teaching learning experiences:

• Maintain microcontroller-based systems.

3. COURSE OUTCOMES (COs)

The theory, practical experiences and relevant soft skills related to this course are to be taught and implemented, in order that the scholar demonstrates the subsequent industry oriented COs related to the above mentioned competency:

- a. Analyze architecture of microcontroller ICs.
- b. Understand the working of microcontrollers
- c. Understand the Instruction set and programming related to microcontrollers
- d. Interpret the program for 8051 in assembly language for the given operations.
- e. Interpret the program by using timer, interrupt and serial ports /parallel ports.
- f. Interface the memory and I/O devices to 8051 microcontroller.
- g. Maintain microcontroller used in different application.

	achi hem	<u> </u>			Examination Scheme											
			Credit	Theor	ry						Prac	tical				
L	Т	Р	(L+T+ P)	Pape Hrs.	ESE		PA		Tota	ıl	ES	SE	PA		Tota	1
					Ma	Min	Ma	Min	Ma	Min	Ma	Mi	Max	Min	Ma	Mi
					х		x		х		х	n			х	n
4	-	2	6	3	70	28	30	12	100	40	25	10	25	10	50	20

4. TEACHING AND EXAMINATION SCHEME

(*): Under the theory PA, Out of 30 marks, 10 marks are for micro-project assessment to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessment of the UOs required for the attainment of the COs,

Semester IV

DEPM

Legends: L-Lecture; T— Tutorial/Teacher Guided Theory Practice; P -. Practical; C — Credit ESE - End Semester Examination; PA - Progressive Assessment.

5. SUGGESTED PRACTICALS/ EXERCISES

The tutorials in this section are sub-components of the COs to be developed and assessed in the student to lead to the attainment of the competency.

r. Io.	Practical Outcomes (PrOs)		Approx. Hrs. Required
1	Identify various blocks of 8051 microcontroller development board.		02
2	Write sample assembly language program using various addressing modes and assembler directives.	Ι	02
3	Write an assembly language program (AIP) to perform arithmetic operations addition, subtraction, multiplication and division.	II	02
4	Write an ALP to transfer data from source to destination location of internal/external data memory.	II	02
5	Write an ALP to find smallest/largest number from the given data bytes stored in internal/external data memory locations.	II	02
6	Write an ALP for arranging numbers in ascending /descending order stored in external memory locations.	II	02
7	Write an ALP to generate delay using register.	II	02
8	Write an ALP to transfer 8-bit data serially on serial port.	III	02
9	Interface LED with microcontroller and turn it ON with microcontroller interrupt.	III	02
10	Develop an ALP to generate pulse and square wave by using Timer delay.	III	02
11	Interface 4X4 LED matrix with 8051 to display various pattern.	III	02
12	Interface 7-segment display to display the decimal number from 0 to 9.	IV	02
13	Interface relay with microcontroller and turn it ON and OFF.	IV	02
14	Interface LCD with 8051 microcontrollers to display the character and decimal numbers.	IV	02
15	Interface the given keyboard with 8051and display the key pressed.	IV	02
16	Interface ADC with 8051 microcontroller and verify input/output.	IV	02
17	Interface DAC with 8051 microcontroller and observe following waveforms: square wave, triangular wave, sawtooth wave.	IV	02
18	Interface stepper motor to microcontroller and rotate in clockwise and anti-clockwise direction at the given angles.	V	02
Tota	al		36

Note: -

i. A suggestive list of PrOs is given in the above table. More such PrOs can be added to attain the COs and competency. A judicial mix of minimum 12 or more practical need to be performed, out of which, the practical's marked as `*' are compulsory, so that the

student reaches the 'Precision Level' of Dave 's 'Psychomotor Domain Taxonomy' as generally required by the industry.

ii. The 'Process' and 'Product' related skills associated with each PrO is to be assessed according to a suggested sample given below:

Sr. No.	Performance Indicator	Weightage in %
1	Preparation of experimental set up	20
2	Setting and operation	20
3	Safety measures	10
4	Observations and recording	10
5	Interpretation of result and conclusion	20
6	Answer to sample questions	10
7	Submission of report in time	10
Total		100

The above PrOs also comprise of the following social skills/attitudes which are Affective Domain Outcomes (ADOs) that are best developed through the laboratory/field based experiences:

- a) Follow safe practices.
- b) Practice good housekeeping.
- c) Practice energy conservation.
- d) Demonstrate working as a leader/a team member.
- e) Maintain tools and equipment.
- f) Follow ethical practices.

The ADOs are not specific to any one PrO, but are embedded in many PrOs, Hence, the acquisition of the ADOs takes place gradually in the student when s/he undertakes a series of practical experiences over a period of time. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- 'Valuing Level' in 1st year.
- 'Organising Level' in 2nd year_
- 'Characterising Level' in 3rd year.

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED -

The major equipment with broad specification mentioned here will usher in uniformity in conduct of experiments, as well as aid to procure equipment by authorities concerned.

Sr. No	Equipment Name with Broad Specifications	Exp. S. No.
1	Microcontroller kit :-single board systems with 8K RAM,ROM memory with battery backup,16X4,16 X2, LCD display, PC keyboard interfacing facility, Hex keypad facility, single user cross c-compiler,RS-232,USB, interfacing facility with built in power supply or any other equivalent	A11
2	Desktop PC with microcontroller simulation software. Impedance : 1M ohm	All
3	Stepper Motor, 50/100 RPM	18

D	EPM	Semester IV
4	CRO- Bandwidth AC 10Hz ~ 20MHz (-3dB). DC ~ 20MHz (-3dB), XI0 Probe	17
5	Keyboard 4*4trainer board	15
6	Relay trainer board suitable to interface with 8051 trainer kit	13
7	4X4 LED matrix suitable to interface with 8051 trainer kit	15
8	7-segmenl LED Display:- 0.56 in 1-digit, common anode/common cathode	12
9	ADC (0808)trainer board	16
10	DAC (0808)trainer board	17
11	LCD trainer board	14

7. UNDERPINNING THEORY COMPONENTS

The following topics/subtopics is to be taught and assessed in order to develop UOs for achieving the COs to attain the identified competency:

Unit	Unit Outcomes (UOs in cognitive domain)	Topics and Sub-topics
Unit -1 Basics of Microprocessor & 8051 Microcontroller	 la. Compare salient features microprocessor, microcontroller and microcomputer for the given parameters. lb. Describe with sketches the function of the specified blocks of the given type of microcontroller architecture. lc. Explain with sketches memory organization of 8051 microcontroller. d. Compare the given derivatives of the 8051 microcontrollers. le. Describe with sketches the procedure to troubleshoot the simple given microcontroller- 	 1.1 Microprocessor, microcomputers, and microcontrollers (basic introduction and comparison). 1.2 Types of buses, address bus, data bus and control bus. 1.3 Harvard and Von-neuman architecture; 8051 microcontroller: Architecture, Pin configuration. stack, memory organization. 1.4 Boolean processor, saving options - idle power mode. 1.5 Derivatives of 8051 (8951, 8952 8031, 8751).

DEPM		Semester IV
Unit-II 8051 Instruction Set and programming	 2a. Identify the addressing mode of the given instruction. 2b. Describe the function of the given instruction with suitable examples. 2c. Write an assembly language program (ALP) for the given operation. 2d. Explain the function of the given software development tools. 2e. Explain the use of the given assembler directives with example. 	 2.1 Addressing modes 2.2 Instruction set (Data transfer, Logical, Arithmetic, Branching, Machine control, Stack operation, Boolean). 2.3 Assembly language programming (ALP) 2.4 Software development cycle: editor, assembler, cross- compiler, linker, locator, compiler. 2.5 Assembler Directives: ORG , DB , EQU , END,CODE,DATA
Unit III 8051 Timers, Interrupts , Serial and Parallel Communication	 3a. Write an ALP to generate a delay for the given crystal frequency for the specified waveform on the given port. 3b. Explain with sketch the operation of the given mode for timer and counter. 3c. Explain with sketch the operation of the given mode for serial communication. 3d. Generate the waveforms by using the given mode of timer. 3e. Describe with sketches the procedure to troubleshoot the simple given timer circuit. 	 3.1 Timer/Counters: SFRs: TMOD, TCON, Timer/Counter - Logic and modes, Simple programs on timer to generate time delay. 3.2 Interrupts-SFRs:- IE, IP, Simple programs on interrupts 3.3 Serial communication - SFRs: SCON, SBUF, PCON, Modes of serial communication. Simple programson serial communication. 3.4 I/O port structure and configuration - P0, PI, P2,P3
Unit-IV 8051 Memory and I/O device Interfacing	 4a. Describe with sketch the interfacing of the given external memory. 4b. Explain with sketch the interfacing of the given external I/O device. 4c. Write an assembly language program to operate the given I/O device. 4d. Describe with sketches the interfacing diagram of the given ADC chip. 4e. Describe with sketches the procedure to troubleshoot the simple given I/O device. 	 4.1 Memory interfacing :-Program and data memory 4.2 I/O Interfacing: -LED, relays, keyboard, LCD, seven segment display, Stepper motor. 4.3 Interfacing DAC - 0808 with 8051 and its simple programming 4.4 Interfacing ADC - 0808/09 with 8051 and its simple programming.

DEPM		Semester IV
Unit-V Applications of 8051 Microcontroller	 5a. Generate the specified waveform using 8051 by the given method. 5b.Control the given parameter using 8051 microcontroller. 5c. Explain with sketch the given application which uses the specified microcontroller. 5d. Program 8051 for the given application. 5e. Describe with sketches the procedure to troubleshoot the simple given microcontroller- based application. 	 5.1 Square wave generation using port pins of 8051. 5.2 Square and triangular Waveform generation using DAC. 5.3 Water level controller. 5.4 Temperature controller using ADC (0808/09). 5.5 Stepper motor control for clock wise, Anti-clock wise rotation. 5.6 Traffic light con-roller

Note: To attain the COs and competency, above listed UOs need to be undertaken to achieve the 'Application Level ' and above of Bloom's 'Cognitive Domain Taxonomy

8. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit	Unit Title	Teaching	Distribution of Theory Marks				
No.		Hours	R Level	U Level	A Level	Total Marks	
I	Basics of Microprocessor and 8051 Microcontroller	16	04	06	08	18	
II	8051 Instruction Set and programming	12	02	04	06	12	
III	8051 Timers, interrupts ,serial and parallel communication	14	04	04	08	16	
IV	8051 Memory and I/O device Interfacing	12	02	04	06	12	
V	Applications of 8051 Microcontroller	10	02	04	06	12	
Total	4 7	48	20	24	26	70	

9. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a. Prepare journals based on practical performed in laboratory.
- b. Follow the safety precautions.
- c. Give seminar on relevant topic.
- d. Library/Internet survey regarding different data books and manuals.
- e. Prepare power point presentation on applications of microcontroller.

f. Undertake a market survey of different microcontrollers.

10. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a. Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b. *'L' in item No. 4* does not mean only the traditional lecture method, but different types of teaching methods and media that are to be employed to develop the outcomes.
- c. About *15-20% of the topics/sub-topics* which is relatively simpler or descriptive in nature is to be given to the students for *self-directed learning* and assess the development of the COs through classroom presentations (see implementation guideline for details).
- d. With respect to item No. 9, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- e. Guide student(s) in undertaking micro-projects.
- f. Demonstrate students thoroughly before they start doing the practice.
- g. Encourage students to refer different websites to have deeper understanding of the course.
- h. Observe continuously and monitor the performance of students in Lab.

11. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based. However, in the fifth and sixth semesters, it should be preferably be individually undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should not exceed three. The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than 16 (sixteen) student engagement hours during the course. The student ought to submit micro-project by the end of the semester to develop the industry oriented COs. Micro project report may be of four to five page.

A suggestive list of micro-projects are given here. Similar micro-projects could be added by the concerned faculty:

- a. Prepare a chart of various features using data sheets of 8051 microcontroller and its derivatives.
- b. Prepare a chart of stepper motor to display its features and steps for its operation using data sheets.
- c. Prepare a chart of various features and operations of temperature sensors using data sheets.
- d. Prepare a chart of various types of ADC and DAC to display its features and pin functions using data sheets.
- e. Prepare a chart of various types of LCDs to display its features, pin functions and steps of operations using data sheets.

Semester IV

- f. Prepare a chart of various types of seven segment displays, keyboard to display its features and steps for its operations using data sheets.
- g. Build a circuit using 8051 microcontroller to blink LED.
- h. Build a circuit using 8051 microcontroller to blink LED in ring fashion.
- i. Build a circuit to turn the buzzer ON after 10 seconds,
- j. Build a circuit to turn the buzzer ON after a key pressed,
- k. Build a circuit to display number 0 to 9 with a given delay.
- 1. Build a class period bell using microcontroller.
- m. Build a room temperature measurement circuit using microcontroller.
- n. Build a circuit to generate square waveform using DAC and microcontroller.
- o. Build stepper motor controller using microcontrollers.
- p. Build traffic light controller for specified delay.
- q. Build a water level controller for given parameters.
- r. Identify the advanced microcontrollers such as raspberry-pi, Arduino
- s. Build application based on advanced microcontroller such as raspberry-pi, Arduino

12. SUGGESTED LEARNING RESOURCES: -

Sr. No.	Title of Book	Author	Publication
1	8051 Microcontroller Architecture, Programming and Application	Kenneth J.Ayala	PHI Learning New Delhi,July 2005, ISBN: 978-1401861582
2	Microcontroller Theory and Application	Ajay V. Deshmukh	McGraw Hill, New Delhi, 2017, ISBN- 978-0070585959
3	Microcontrollers Principle and Application	Ajit Pal	PHI Learning,New Delhi, 2014, ISBN: 978-81-203-4392-4
4		Muhammad Ali Mazidi. Gillispie Mazidi.Roli, n D.Mckinlay Janice	Pearson /Prentice Hall,, 2nd edition, Delhi,2008, ISBN 978¬8177589030
5	Microcontroller Architecture Programming, Interfacing and System Design	Raj Kamal	Pearson Education, Delhi, 2012, ISBN:9788131759905
6	Microprocessors and Microcontrollers	Sunil Mathur, Jeebananda Panda	PHI Learning,NewDelhi, 2016, ISBN :978-81-203-5231-5
7	Architecture programming and System Design	Krishna Kant	PHI Learning New Delhi, 2016,ISBN:978-81-203

13. SOFTWARE/LEARNING WEBSITES

- a. Simulation software:-www.keil.com
- b. Microcontroller:- <u>www.faqs.org/microcontroller</u>
- c. Microcontroller:- https://nptel.ac.in/course.html

Semester IV

- d. Memory:- www.slideshare.net/aismahesh/memory-8051
- e. Software:-<u>www.edsim51.com</u>
- f. Microcontroller project:- www.8051projects.net/download-c4-8051-projects.html

Semester IV

Program Name	:	Diploma in Electronics Production & Maintenance
Program Code	:	DEPM
Semester	:	Fourth
Course Title	:	Power Electronics
Course Code	:	21D44

1. RATIONALE

The objective of this subject is to impart fundamental knowledge and skills regarding basic EE, which diploma holders will encounter in their business life. Electronic control circuits play major role in industries. During this era of automation in industry and manufacturing sector, the mechanical controls are largely replaced by power electronic devices. During this context this course aims at acquainting the pass outs with the essential principles and applications of basic power electronics devices, in order that they will maintain the control circuits utilized in the sector. Hence this course has been designed to realize this aim.

2. COMPETENCY

The aim of this course is to assist the scholars to achieve the subsequent industry identified competency through various teaching learning experiences:

• Maintain power electronic devices in electronic circuits.

3. COURSE OUTCOMES (COs)

The theory, practical experiences and relevant soft skills related to this course are to be taught and implemented, in order that the scholar demonstrates the subsequent industry oriented COs related to the above mentioned competency:

- a. Understand AC Circuit Theory.
- b. Identify power electronic devices in circuits.
- c. Maintain triggering and commutation circuits.
- d. Use phase controlled rectifiers in different applications.
- e. Use choppers and inverters in different applications.
- f. Maintain control circuits consisting of power electronic devices.

4. TEACHING AND EXAMINATION SCHEME

	achi hem	0		Exam	Examination Scheme											
			Credit	Theor	Theory					Prac	tical					
L	Т	Р	(L+T+ P)	Pape r Hrs.	ESE		PA		Tota	al	ES	SE .	PA		Tota	l
					Ma	Min	Ma	Min	Ma	Min	Ma	Mi	Max	Min	Ma	Mi
					X		X		X		X	n			X	n
3	-	2	5	3	70	28	30	12	100	40	25	10	25	10	50	20

(*): Under the theory PA, Out of 30 marks, 10 marks are for micro-project assessment to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessment of the UOs required for the attainment of the COs, Legends: L-Lecture; T— Tutorial/Teacher Guided Theory Practice; P -. Practical; C — Credit ESE - End Semester Examination; PA - Progressive Assessment.

5. SUGGESTED PRACTICALS/ EXERCISES

The tutorials in this section are sub-components of the COs to be developed and assessed in the student to lead to the attainment of the competency.

Sr. No.	Practical Outcomes (PrOs)		Approx. Hrs. Required
1	Measure holding current $(1 -)$ and latching current $(1\setminus J \text{ of a given SCR from its V-I characteristic curve.}$	Ι	02
2	Test the performance of given IGBT.	Ι	02
3	Determine break over voltage of given DIAC from its V-I curve.	II	02
4	Test the effect of variation of resistor, capacitor in R and RC triggering circuits of firing angle of SCR.	II	02
5	Test the effects of variation of R on firing angle in synchronized UJT triggering circuit.	II	02
6	Test the performance of Class C-Complimentary type commutation circuit.	III	02
7	Test the performance of half wave controlled rectifier with R, RL load and measure load voltage.	III	02
8	Determine firing angle and output voltage of 3- phase half wave controlled rectifier using Delta-star transformer.	IV	02
9	Test the performance of full wave controlled rectifier with R, RL load and measure load voltage.	IV	02
10		IV	02
11	Test parallel inverter to the measure frequency and output voltages.	IV	02
12	Measure output voltages of step-down chopper for different values of duty cycles. Part I.	IV	02
13	Measure output voltages of step-down chopper for different values of duty cycles. Part II.	IV	02
14	Build/test SMPS for mobile phone charging. Part I.	IV	02
15	Build/test SMPS for mobile phone charging. Part II.	V	02
16	Build Light dimmer circuit using TRIAC test the effect of resistance variation on intensity of lamp.	V	02
Tota	1		32

Note: -

- I. A suggestive list of PrOs is given in the above table. More such PrOs can be added to attain the COs and competency. A judicial mix of minimum 12 or more practical need to be performed, out of which, the practical's marked as `*' are compulsory, so that the student reaches the 'Precision Level' of Dave 's 'Psychomotor Domain Taxonomy' as generally required by the industry.
- *II. The 'Process' and 'Product' related skills associated with each PrO is to be assessed according to a suggested sample given below:*

Sr. No.	Performance Indicator	Weightage in %
1	Preparation of experimental set up	20

Semester IV

2	Setting and operation	20
3	Safety measures	10
4	Observations and recording	10
5	Interpretation of result and conclusion	20
6	Answer to sample questions	10
7	Submission of report in time	10
TOTAL		100

The above PrOs also comprise of the following social skills/attitudes which are Affective Domain Outcomes (ADOs) that are best developed through the laboratory/field based experiences:

- a. Follow safe practices.
- b. Practice good housekeeping.
- c. Practice energy conservation.
- d. Demonstrate working as a leader/a team member.
- e. Maintain tools and equipment.

The ADOs are not specific to any one PrO, but are embedded in many PrOs, Hence, the acquisition of the ADOs takes place gradually in the student when s/he undertakes a series of practical experiences over a period of time. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- 'Valuing Level' in lst year.
- 'Organising Level' in 2nd year.
- 'Characterising Level' in 3rd year.

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED -

The major equipment with broad specification mentioned here will usher in uniformity in conduct of experiments, as well as aid to procure equipment by authorities concerned.

Sr. No	Equipment Name with Broad Specifications	Exp. S. No.
	Power scope: dual channel, dual trace,5Mhz,max voltage $1000 V_{p-p}$	4,6,8,9, 11-16
	TONG Tester for ac line current measurement up to 100A	7
	CRO:20 MHz with color display , dual channel, ac voltage 750v max	6-8
	Digital Tachometer- non - contact type up to 2000rpm	Micro project
	LCR Q meter Accurate 0.01% - up to 5 MHz	3,5,1
	Multiple output DC regulated power supply: 0-30V,0-100V,0-300V up to 2A	1,2,10
	Function generator: DC to 10 MHz , max output 0-30Vp-p, sine, triangle, square wave function within build counter.	10
	Single phase DIMMERSTAT :0-300Vac,5A	6-8
	Digital meter for DC voltage measurement up to 700V, DC current measurement up to 1 OA	1,2

DF	CPM	Semester IV
0	Desktop PC, 32GFIz with multimedia features, LED monitor	Micro project

7. UNDERPINNING THEORY COMPONENTS

The following topics/subtopics is to be taught and assessed in order to develop UOs for achieving the COs to attain the identified competency:

Unit	Unit Outcomes (UOs) (in cognitive domain)	Topics and Sub-topics
Unit-I Thyristor Family Devices	 1a. Explain with sketches the working of the given type of thyristor device. 1b. Interpret V-I characteristics of the given power electronic device. 1c. Calculate latching current (IL) and holding current (In) for the given type of SCR. 1d. Select relevant triggering device for the given circuit with justification. 1.e Identify various power electronic devices along with their specifications. If. Describe with sketches the procedure to troubleshoot the simple given type of thyristor circuit. 	 1.1 SCR: Construction, operating Principle with Two transistor analogy, V-I characteristics, latching current (IL) and holding current (Ih), applications of SCR. 1.2 Thyristor family devices: LASCR, SCS, GTO and TR1AC, power MOSFET, IGBT : Construction, operating principle, V-1 characteristics applications 1.3 Triggering devices- SUS, SBS and DIAC: Construction, operating Principle, V-I characteristics and applications
Unit- II Turn ON and Turn OFF methods of SCR	 2a. Describe the turn ON mechanism of the given SCR circuit. 2b. Explain with sketches the effect of the given firing angles on load voltages. 2c. Explain with sketches the methods of triggering for the given SCR. 2d. Explain with sketches the turn OFF method of the given SCR. 2e. Explain with sketches the working of protection circuits for the given SCR against over voltage, over current. 2f. Describe with sketches the procedure to troubleshoot the simple given type of thyristor turn-on/off circuit. 	 2.1 Concept of turn ON mechanism of SCR: High voltage thermal triggering, illumination triggering, dv/dt triggering, gate triggering of SCR. 2.2 Gate trigger circuits : resistance triggering circuit, resistance, capacitance triggering circuit 2.3 SCR triggering Method: UJT/ PUT- relaxation oscillator circuit , synchronized UJT triggering circuit, pulse transformer and optocoupler (MCT2E) 2.4 Turn OFF methods : Class A-series resonant commutation circuit, class B-Shunt resonant commutation circuit, class C-Complimentary Symmetry commutation circuit 2.5 Protection circuits of SCR: over voltage, over current, snubber circuit and crowbar.

DEPM		Semester IV
Unit- III Phase controlled Rectifiers	 3a. Explain with sketches the effect of change in firing angle on output current of the given rectifier considering concept of phase control. 3b. Interpret the output waveforms of the given phase controlled rectifier for given load condition. 3c. Calculate load voltage and load current of the given controlled rectifier. 3d. Explain effect of the given load on the output of the given sketches the procedure to troubleshoot the simple given type of phase controlled rectifier. 	 3.1 Phase control parameters: Firing angle (a) and conduction angle (0). 3.2 Single phase half wave controlled rectifier: circuit diagram, working and waveforms with R and RL load, effect of freewheeling diode with RL load. 3.3 Single phase centre tapped full wave controlled rectifier: circuit diagram, working and waveforms with R and RL load, effect of freewheeling diode with RL load. 3.4 Basic three phase half wave controlled rectifier.
Unit IV Choppers and Inverters	 4a. Explain the working of the given Choppers with sketches and formulae. 4b. Explain with sketches the working of the given type of inverter circuit. 4c. Select the chopper and inverter for the given application. 4d. Describe with sketches the procedure to troubleshoot the simple given type of Chopper/Inverter. 	 4.1 Convertors and its types 4.2 Block diagram and working of step up and step down choppers using power MOSFET. 4.3 Inverters: circuit diagram, working of series inverter, parallel inverter.
Unit-V Consumer Electronic Appliances	 5a. Describe the use of power electronic device in the given industrial circuit. 5b. Identify industrial control circuit in the given PCB. 5c. Describe the performance of the given Industrial control circuit. 5d. Explain with sketches the working of the given type of UPS. 5e. Describe with sketches the procedure to troubleshoot the given power electronic application such as the UPS/SMPS and others. 	 5.1 Light dimmer circuit using DIAC- TRIAC. 5.2 Battery charger using SCR 5.3 Emergency lighting system 5.4 Temperature controller using SCR. 5.5 Block diagram and concept of UPS (on line and offline) 5.6 Block diagram and concept of SMPS.

Note: To attain the COs and competency, above listed UOs need to be undertaken to achieve the 'Application Level ' and above of Bloom's 'Cognitive Domain Taxonomy.

Semester IV

DEPM

8. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit	Unit Title	Teaching	Distribution of Theory Marks				
No.			R Level	U Level	A Level	Total Marks	
I	Thyristor Family Devices	12	4	6	8	18	
II	Turn ON and Turn OFF	10	4	4	6	14	
III	Phase controlled Rectifiers	10	2	4	8	14	
IV	Choppers and Inverters	10	2	4	8	14	
V	Industrial Applications of power electronic devices	06	2	2	6	10	
Total		48	14	20	36	70	

9. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a. Library survey regarding different data sheets and manuals.
- b. To collect the literature related to specification of available power devices in the market.
- c. Refer technical magazine to collect information of current devices used in power electronics industry.
- d. Prepare power point presentation for controlled rectifiers,

f. Visit to nearby industry related to power electronics.

10. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a. Massive open online courses (MOOCs) may be used to teach various topics/sub topics.
- b. 'L' in item No. 4 does not mean only the traditional lecture method, but different types of teaching methods and media that are to be employed to develop the outcomes.
- c. About 15-20% of the topics/sub-topics which is relatively simpler or descriptive in nature is to be given to the students for self-directed learning and assess the development of the COs through classroom presentations (see implementation guideline for details).
- d. With respect to item No. 9, teachers need to ensure to create opportunities and provisions for co-curricular activities.
- e. Guide student(s) in undertaking micro-projects.
- f. Use PPTs to explain the construction and working of various power electronic devices.
- g. Use PPTs to explain the construction and working of controlled rectifiers.

- h. Guide students to use data manuals.
- i. Deliver seminar on related topic.
- j. Prepare industrial visit report with reference to specification, uses of power electronics application.

11. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based. However, in the fifth and sixth semesters, it should be preferably be individually undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should not exceed three.

The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission.

A suggestive list of micro-projects are given here. Similar micro-projects could be added by the concerned faculty:

- a. Controlled Rectifier: Build a circuit of the Battery charger for charging a battery of 6V, 4AH.
- b. Controlled Rectifier: Build fan speed regulator circuit using DIAC, TRIAC on zero PCB.
- c. Phase controlled Rectifiers: Build the circuit for Speed control of 12V DC shunt motor using IGBT on zero PCB.
- d. Phase controlled Rectifiers: Build AC power flasher using two SCRs on zero PCB.
- e. Industrial Applications of power devices: Build DC time delay relay using PUT on zero PCB.
- f. Turn ON and Turn OFF methods of SCR: Build Ramp and pedestal synchronized triggering circuit using UJT and pulse transformer on zero PCB.
- g. Industrial Applications of power devices: Build temperature controller using PT-100 thermistor and thyristor on zero PCB.
- h. Industrial Applications of power devices: Build Emergency light system. For 6V battery on zero PCB.
- i. Choppers and Inverters: Build Step down chopper using MOSFET/IGBT on zero PCB.
- j. Industrial Applications of power devices: Build low power SMPS of 0 to k. 12V DC using suitable power electronic device on zero PCB.

Sr.	Title of Book	Author	Publication
No.			
1	Power Electronics	-	Oxford University Press , New Delhi 110001, 2013, ISBN 0-19-567092-2
	Fundamentals of Power Electronics	-	ISTE Learning materials centre,2006, ISBN 9788125918530

12. SUGGESTED LEARNING RESOURCES: -

Semester IV

3	Power Electronics Essentials and Applications	·	Wiley India Pvt. Ltd, New Delhi, 2011, ISBN :9788126519453
4		,	Pearson Education India, New Delhi, 2012,ISBN: 9780133125100
5	SCR Manual Including TR1ACS and other thyristors (6 th Edition)		General Electric Co,2007, ISBN:9780137967636

13. SOFTWARE/LEARNING WEBSITES

a. <u>https://nptel.ac.in/course.html</u>.

b. PSIM software for power electronics.

Semester IV

Program Name	:	Diploma in Electronics Production and maintenance
Program Code	:	DEPM
Semester	:	Fourth
Course Title	:	Digital communication system
Course Code	:	21D45

1. RATIONALE

The students should understand the advantage and limitations of varied analog and digital modulation systems on a comparative a scale and relate to them while studying practical communication systems. Communication technologies have undergone radical changes, especially thanks to convergence of computers and communication. No industry is untouched by the data communication. This course will enable the diploma engineers to use facts, concepts and dealing principles of data communication for the troubleshooting and maintenance of data communication system. This course is meant to develop the talents to diagnose and rectify the errors occur in data communication also will lay the inspiration to know the varied modern communication systems.

2. COMPETENCY

The aim of this course is to assist the scholar to achieve the subsequent industry identified competency through various teaching learning experiences:

• Maintain basic digital communication systems.

3. COURSE OUTCOMES (COs)

The theory, practical experiences and relevant soft skills related to this course are to be taught and implemented, in order that the scholar demonstrates the subsequent industry oriented COs related to the above mentioned competency:

- a. Explain the concept and need of modulation and demodulation.
- b. Analyze various error detection and correction codes in digital communication systems.
- c. Use various pulse code modulation techniques.
- d. Maintain systems based on digital modulation techniques.
- e. Multiplex and demultiplex digital signals.
- f. Maintain spread spectrum based systems.

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme			Examination Scheme													
		Credit Theor									Practical					
L	Т	Р	(L+T+ P)	Pape F Hrs.	ESE		PA		Total		ESE		РА		Total	
					Ma	Min	Ma	Min	Ma	Min	Ma	Mi	Max	Min	Ma	Mi
					X		X		X		X	n			X	n
4	-	4	8	3	70	28	30	12	100	40	25	10	25	10	50	20

(*): Under the theory PA, Out of 30 marks, 10 marks are for micro-project assessment lo facilitate integration of COs and the remaining 20 marks is the average of 2 tests lo be taken during the semester for the assessment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T Tutorial/Teacher Guided Theory Practice; P - Practical; C ESE -End Semester Examination; PA - Progressive Assessment.

5. SUGGESTED PRACTICALS/ EXERCISES

The practical in this section are PrOs (i.e. sub-components of the COs) to be developed and assessed in the student for the attainment of the competency:

s. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. Required
1	To construct the circuit for Generation of hamming code for 4 bits data.	Ι	02*
2	To construct the circuit for one bit error correction using hamming code.	Ι	02*
3	Generate: (a) Unipolar -NRZ, RZ (b) Bipolar- NRZ (AMI), Manchester for given data.	Ι	02
4	non return zero(UPNRZ) and polar return zero(PRZ). Detect error by VRC techniques using relevant simulation tool	Ι	02
5	Detect error by VRC techniques using relevant simulation tool.	Ι	
6	Detect error by LRC techniques using relevant simulation tool.	Ι	02*
7	Test the performance of natural and flat top sampling circuit.	1	02*
8	Test the performance of sampling circuit for variation in sampling frequency.	II	02
9	Test the performance of the Pulse Code modulator/ demodulator circuit.	II	02*
10	Test the performance of the delta modulator/ demodulator circuit.	11	02
11	Test the performance of the adaptive delta modulator/ demodulator circuit	II	02
12	Test the performance of the differential pulse code modulator (DPCM) modulator/ demodulator circuit	II	02*
13	Write a program using a relevant simulation tool to observe sampling process for sampling rate less than, equal to and greater than the Nyquist rate.	II	02
14	Test the performance of the Amplitude Shift Keying(ASK) modulator / demodulator circuits.	II	02*
15	Test the performance of the Amplitude Shift Keying(ASK) using relevant simulation software.	III	02
16	Test the performance of the Binary Phase Shift Keying(BPSK) Modulator and Demodulator circuits.	III	02*
17	Test the performance of Frequency Shift Keying(FSK) Modulator and Demodulator circuits.	III	02
18	Test the performance of the Differential Phase shift keying(DPSK) modulator / demodulator circuits.	III	02*
19	Test the performance of Quadrature Phase shift keying(QPSK) modulator and demodulator circuits.	III	02
20	Test the performance of Quadrature Amplitude Modulation (QAM)	III	02

Semester IV

	modulator and demodulator circuits.		
21	Test the performance for 4-input time division multiplexing circuit.	IV	02*
22	Test the performance for 2- input frequency division multiplexing (FDM) circuit.	IV	02*
23	Generate a TDM signal using relevant simulation software.	IV	02
24	Generate a FDM signal using relevant simulation software.	IV	02
25	Generate PN sequence for given maximum length.	IV	02
26	Generate PN sequence for given maximum length using relevant simulation software.	IV	02
27	Generate two channel CDMA-DSSS signal and demodulate it.	IV	02*
28	Generate two channel CDMA-FHSS signal and demodulate it.	V	02
	Total		56

Note: -

i. A suggestive list of PrOs is given in the above table. More such PrOs can be added to attain the COs and competency. A judicial mix of minimum 12 or more practical need to be performed, out of which, the practical's marked as `*' are compulsory, so that the student reaches the 'Precision Level' of Dave 's 'Psychomotor Domain Taxonomy' as generally required by the industry.

ii The 'Process' and 'Product' related skills associated with each PrO is to be assessed according to a suggested sample given below:

Sr. No.	Performance Indicator	Weightage in %
1	Preparation of experimental set up:	20
2	Setting and operation	20
3	Safety measures	10
4	Observations and Recording	10
5	Interpretation of result and Conclusion	20
6	Answer to sample questions	10
7	Submission of report in time	10
TOTAL		100

The above PrOs also comprise of the following social skills/attitudes which are Affective Domain Outcomes (ADOs) that are best developed through the laboratory/field-based experiences:

- f) Follow safety practices.
- g) Practice good housekeeping.
- h) Demonstrate working as a leader/a team member.
- i) Maintain tools and equipment.
- j) Follow ethical practices.

The ADOs are not specific to any one PrO, but are embedded in many PrOs, Hence, the acquisition of the ADOs takes place gradually in the student when s/he undertakes a series of practical experiences over a period of time. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- 'Valuing Level' in 1st year.
- 'Organising Level' in 2nd year.
- 'Characterising Level' in 3rd year.

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED -

The major equipment with broad specification mentioned here will usher in uniformity in conduct of experiments, as well as aid to procure equipment by authorities concerned.

Sr.	Equipment Name with Broad Specifications	Exp. S.
No		No.
1	CRO - Dual trace. 50 M1 1/ and above bandwidth, component tester	1 to 28
2	Spectrum analyzer, 9 kHz to 1.5 GHz Frequency range.	20-28
	Typical -135 dBm.	
3	Function Generator: Frequency Range 0.1 Hz to 30MHZ	1 to 28
4	RF generator/wideband oscillator Wide Frequency Range 100 KHz	20-28
	to 150 MHz	
5	Digital Communication Trainer, In-built internal data generator.	2 to 28
	Type of Modulations and Demodulations: Sampling. Line coding.	
	PCM, DPCM, DM, ADM, ASK, FSK, BPSK.DPSK, QPSK,	
	QAM,TDM,FDM.TDMA,FDMA,CDMA.FHSS.DSSS	
6	Digital storage oscilloscope, 50MHz and above, dual trace,	20-28

7. UNDERPINNING THEORY COMPONENTS

The following topics/subtopics is to be taught and assessed in order to develop UOs for achieving the COs to attain the identified competency:

DEPM		Semester IV
Unit-II Pulse Code Modulation Techniques	 2a. Explain sampling and quantization process for the given 'q' levels of quantization. 2b. Calculate sampling frequency for the given frequency of signals. 2c. Interpret the utilization of bandwidth for the given pulse modulation technique. 2d. Compare the performance of the given types of pulse. 	 2.1 Sampling and quantization process: types of sampling, Nyquist sampling theorem (only statement), Aliasing effect, Quantization process, Quantization error/noise, Compounding. 2.2 Pulse code modulation (PCM), Differential pulse code modulation (DPCM): Transmitter and Receive^ block diagram and its workings advantages and disadvantage Delta Modulation 2.3 Delta Modulation (DM): Block diagram of Transmitter and Receiver, slope overload and Granular noise, Advantages and disadvantages of DM. 2.4 adaptive Delta modulation (ADM): Transmitter and Receiver block diagram, advantages of ADM. 2.5 2.4 pulse width modulation, pulse position
Unit- III Digital Modulation Techniques	 3a. Summarize the given types of shift keying techniques. 3b. Explain generation of the given type of shift keying signals. 3c. Utilize the given shift keying techniques on the basis of their analysis. 3d. Interpret the constellation diagram for the given keying signals. 3e. Compare the salient features of the given types of digital modulation techniques for the following: bandwidth requirement, SNR, detection method. 3f. Describe the procedure to troubleshoot the specified digital modulation circuit 	coherent detection. 3.2 Shift keying Techniques : Amplitude Shift Keying (ASK) Frequency shift keying (FSK), Phase shift keying (PSK), Differential Phase shift keying (DPSK), Quadrature Phase shift keying (QPSK), Constellation diagram , transmitter and receiver

DEPM		Semester IV
nit- IV Multiplexin g and Multiple Access Techniques	 4a. Classify the given multiplexing techniques on the basis of domain of working. 4b. Choose the suitable Multiplexing techniques for multiplexing the given number of signals. 4c.Interpret the given Multiplexing hierarchy. 4d. Contrast the given type of multiplexing techniques and Multiple access techniques. 4e. Describe the procedure to troubleshoot the specified multiplexing circuit 	 4.1 Need and methods of multiplexing: Time Division Multiplexing (TDM), Frequency Division Multiplexing (FDM), Code Division multiplexing (CDM), definition, block diagram and their comparison. 4.2 E and T- carrier multiplexing hierarchy. 4.3 Access techniques: Need and methods-Time Division Multiple Access (TDMA), Frequency Division multiple Access (FDMA). Code Division Multiple access (CDMA).
Unit- V Spread Spectrum Modulation	 5a. Interpret the aspects of spread spectrum (SS) Modulation for the given application. 5b. Develop PN Sequence for the Given length of data bits. 5c. Interpret the given spread spectrum Modulation technique. 5d. Compare the performance of the fast and slow frequency hopping on the basis of given parameters. 	 5.1 Introduction to spread spectrum (SS) Modulation: advantages over fixed frequency, applications of SS modulation, block diagram Spectrum modulation system. 5.2 Pseudo Noise (PN) sequence: definition, generation and maximum length sequence 5.3 Types of SS Modulation: Direct sequence spread spectrum signal (DSSS)and Frequency hopped spread spectrum (FHSS)

Note: To attain the COs and competency, above listed UOs need to be undertaken to achieve the 'Application Level ' and above of Bloom 's 'Cognitive Domain Taxonomy

8. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit	Unit Title	Teaching	Distribution of Theory Marks					
No.		Hours	R Level	U Level	A Level	Total Marks		
I	Digital Communication System and Coding Methods	16	06	08	04	18		
II	Pulse Code Modulation	16	04	08	04	16		
III	Digital Modulation Techniques	16	04	04	08	16		
IV	Multiplexing and Multiple Access Techniques	10	04	04	04	12		
V	Spread Spectrum Modulation	06	02	02	04	08		
Total		64	14	24	32	70		

Semester IV

DEPM

Legends: R=Remember, U=Understand, A—Apply and above (Bloom's Revised taxonomy) Note: This specification table provides general guidelines to assist student for their learning and to leachers to teach and assess students with respect to attainment of UOs, The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may vary from above table.

9. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a. Prepare journals based on practical performed in laboratory.
- b. Follow the safety precautions.
- c. Use various meters to test electric/electronic equipment and component.
- d. Library /Internet survey of electrical circuits and network.

e. Prepare power point presentation or animation for understanding different circuits behavior.

10. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online course (MOOCs) may be used to teach various topics/sub topics.
- b) in item No. 4 does not mean only the traditional lecture method, but different types of teaching methods and media that are to be employed to develop the outcomes.
- c) About 15-20% of the topics/sub-topics which is relatively simpler or descriptive in nature is to be given to the students for self-directed learning and assess the development of the COs through classroom presentations (see implementation guideline for details).
- d) With respect to item No. 9, teachers need to ensure to create opportunities and provisions for co-curricular activities.
- e) Guide student(s) in undertaking micro-projects.
- f) Use PPTs to explain the construction and working of rectifier.
- g) Use PPTs to explain the construction and working of wave shaping circuits.
- h) Guide students for using data manuals.

11. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based. However, in the fifth and sixth semesters, it should be preferably be individually undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should not exceed three.

The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than 16 (sixteen) student engagement hours during the course. The student ought to submit micro-project by the end of the semester to develop the industry-oriented COs.

Semester IV

DEPM

A suggestive list is given here. Similar micro-projects could be added by the concerned faculty:

- a. Build a parity generator/checker circuit using gates/IC. Create an error in one bit and check for parity at the o/p.
- b. Build the checksum generator using adder and invertor Gate. Create one bit error and check for the data at the o/p.
- c. Build a transistorized chopper circuit to check the natural sampled signal.
- d. Build the circuit using sample and hold amplifier to check the flat top sampled signal.
- e. Generate an ASK signal generator for two different bit patterns.
- f. Develop a circuit to generate FSK.
- g. Build a circuit to transmit 2 data signals simultaneously using the same medium.
- h. Develop a PN Sequence generator and test for various input sequence

Sr. No.	Title of Book	Author	Publication
1	Electronic Communication system		Pearson Education, Delhi, 2009, ISBN: 9788131719534
2	Digital Communication		McGraw Hill, Delhi, 2011, ISBN 9780070707764
3	Data Communication and Networking	,	McGraw Hill, Delhi, 2013, ISBN: 9781259064753
4	Digital Communication	,	Pearson Education India, Delhi, Second Edition, 2014, ISBN: 9781292026060

12. SUGGESTED LEARNING RESOURCES: -

13. SOFTWARE/LEARNING WEBSITES

- a. Information theory :-<u>https://www.youtube.com/watch?v=nvmo9voRiSs</u>
- b. Digital Modulation technique:-https://www.youtube.com/watch?v=GLnGVB92K78
- c. Multiple access:-<u>https://www.youtube.com/watch?v=AKXFwwcww_E</u>
- d. DigitalCommunication:-<u>https://www.slideshare.net/lineking/digital-communication-</u> system?qid=2ad04eff>5203 -4d01 -ad26-65e2c9224c8e&v=&b=&from search=2<u>www.youtube.com</u> /Digital communication circuits
- e. Data communication and Networking:- <u>http://datacombasic.blogspot.in/201</u>1/03/e-and-t-carrier.html

Semester IV

Program Name	:	Diploma in Electronics Production & Maintenance
Program Code	:	DEPM
Semester	:	Fourth
Course Title	:	Maintenance of Electronics Equipment and EDA Tools Practices
Course Code	:	21D46

1. RATIONALE

The module has been designed to supply an understanding of the fundamentals of Electrical and Electronic with an introduction to varied electronic active & passive components and test equipments. The participants would be familiar with the Electrical Hazards along side work place safety instructions and precautions that require to be taken while handling the Electrical and equipment and appliances. Equipment's with electronic circuitry are increasingly getting used altogether the industries and maintenance of them is that the essential work for the right functioning of the entire system. This course will enable the scholars to develop skills to take care of the essential electronic circuitry utilized in equipment. Functional verification tool confirms that the functionality of a model of a circuit. This course also will enable them to satisfy the essential prerequisite for the advance maintenance issues which they're going to face within the industries.

2. COMPETENCY

The aim of this course is to assist the scholars to achieve the subsequent industry identified competency through various teaching learning experiences:

• Maintain the electronic Equipment/Appliance/Gadgets using EDA tools.

3. COURSE OUTCOMES (COs)

The theory, practical experiences and relevant soft skills related to this course are to be taught and implemented, in order that the scholar demonstrates the subsequent industry oriented COs related to the above mentioned competency:

- a. Select maintenance policy for specified Equipment/Appliance/Gadgets.
- b. Understand the basic terminology and handling of tools and instruments.
- c. Select troubleshooting tools for specified work.
- d. Maintain the electronic home appliance/consumer electronic products.
- e. Simulate electronic circuits using EDA tools.
- f. Troubleshoot electronic circuit using the EDA tools.

4. TEACHING AND EXAMINATION SCHEME

Te Sc	achi hem	ng e		Examination Scheme												
			Credit		Theory						Practi	cal				
L	Т	Р	(L+T+P)	Pape r Hrs.	ESE		PA		Tota	al	ES	E	PA		Tota	l
					Max	Min	Ma	Min	Ma	Min	Max	Mi	Max	Min	Max	Mi
							X		X			n				n
-	-	4	4	-	-	-	-	-	-	-	25	10	25	10	50	20

(*): Under the theory PA, Out of 30 marks, 10 marks are for micro-project assessment to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessment of the UOs required for the attainment of the COs, Legends: L-Lecture; T— Tutorial/Teacher Guided Theory Practice; P -. Practical; C — Credit ESE - End Semester Examination; PA - Progressive Assessment.

5. SUGGESTED PRACTICALS/ EXERCISES

The tutorials in this section are sub-components of the COs to be developed and assessed in the student to lead to the attainment of the competency.

Sr. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. Required
1	Prepare the work order for the maintenance of the given equipment.	Ι	2
2	Prepare Bin card for the maintenance of given equipment.	Ι	2
3	Install closed circuit television (CCTV)	I,III	2
4	Install online/ offline UPS.	I,III	2
5	Test the performance of the given (fractional horse power) DC Motors.	II	2
6	Test the performance of the given Stepper Motor.	II	2
7	Identify / Test various ICs (Analog and Digital) using 1C tester (Analog and Digital).	II	2
8	Troubleshoot the data projector.	III	2
9	Troubleshoot the circuit breaker (MCB and ELCB).	I,III	2
10	Install DTH receiver (Indoor and Outdoor unit).	III	2
11	Troubleshoot the regulated power supply circuit of the given equipment.	III	2
12	Troubleshoot the given mixer /grinder with fractional horse power.	III	2
13	Assemble various parts of computer system and install operating system, application software and antivirus on a computer system.	III	2
14	Troubleshoot the domestic water level controller.	III	2
15	Troubleshoot the electronic weighing machine.	III	2
16	Troubleshoot the emergency light system.	III	2
17	Troubleshoot the photo voltaic solar panel power system.	III	2
18	Create new file using given EDA tool to develop the layout of regulated power supply circuit.	IV	2
19	Measure dc current and dc voltage of the given circuit using Node Analysis through EDA simulation tool.	V	2
20	Simulate/Test half wave rectifier circuit using EDA tool.	V	2
21	Measure ac current and voltage of RL, RC and RLC in ac circuit with EDA tool.	v	2
22	Use EDA tool to draw and simulate schematic circuit of full wave rectifiers.	v	2
23	Use EDA tool to simulate two stage RC coupled/transformer coupled/ dc coupled amplifier.	V	2

DEPM Semester IV 24 Use EDA tool to draw and simulate given circuit of inverting 2 V /non-inverting amplifier using IC741 Use EDA tool to simulate 3-bit adder to match truth table. 25 2 V 26 Use EDA tool to simulate 4:1 multiplexer, 1:8 de-multiplexer to 2 v match truth table. 27 Use EDA tool to simulate BCD to seven segment decoder. 2 V 2 28 Develop the PCB of power supply circuit using (layout in Expt. v 19). Total 56

Note: -

- i. A suggestive list of PrOs is given in the above table. More such PrOs can be added to attain the COs and competency. A judicial mix of minimum 12 or more practical need to be performed, out of which, the practical's marked as `*' are compulsory, so that the student reaches the 'Precision Level' of Dave 's 'Psychomotor Domain Taxonomy' as generally required by the industry.
- *ii.* The 'Process' and 'Product' related skills associated with each PrO is to be assessed according to a suggested sample given below:

Sr. No.	Performance Indicator	Weightage in %
1	Identify the requirements of practical set up	15
2	Operate equipment skill fully	20
3	Record Observations	20
4	Submit report in time	30
5	Attendance and punctuality	15
TOTAL		100

The above PrOs also comprise of the following social skills/attitudes which are Affective Domain Outcomes (ADOs) that are best developed through the laboratory/field based experiences:

- a. Follow safe practices.
- b. Maintain tools and equipment
- c. Demonstrate working as a leader / a team member.
- d. Awareness of EDA fools.
- e. Follow ethical practices.

The ADOs are not specific to any one PrO, but are embedded in many PrOs, Hence, the acquisition of the ADOs takes place gradually in the student when s/he undertakes a series of practical experiences over a period of time. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- 'Valuing Level' in lst year.
- 'Organising Level' in 2nd year.
- 'Characterising Level' in 3rd year.

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED –

The major equipment with broad specification mentioned here will usher in uniformity in conduct of experiments, as well as aid to procure equipment by authorities concerned.

Semester IV

Sr.	Equipment Name with Broad Specifications	Exp. S.
No 1	Dual Power supply 0- 30V, 2A	No. 2-20
2	Cathode Ray Oscilloscope, Dual Trace 50MHz and above, 1 Mega Ohm Input Impedance	2-20
3	Function Generator 0-2 MHz with sine, square and triangular wave output with variable frequency and amplitude	3-5,11-13
4	Digital IC tester: Tests a wide range Digital IC's such as 74 Series, 40/45 Series of CMOS IC's Microcontroller, Memories.	8
5	Analog IC tester: Test the general purpose analog ICs :Op-Amp, Voltage regulator, power amplifier, PLL,VCO	8
6	EDA tools like: eSim/ LTSPICE /TINA/OrCAD/ MultiSim/SPICE/ /Easy EDA /Circuit Logix/ MicroCap /SciLAB	21,8
7	Personal Computer, 4GB RAM. 500GB HDD , higher Processor	21,8
8	D.C. Motor, Stepper Motor	
9	Set up of DTH sample : Dish Antenna ,Universal LNBF, Low Loss RF cable (RG-6), Satellite Receiver with Remote Controller (SATTOP Box), Audio Video Cable	10
10	Television set 21 "LCD and LED	10
11	Set up of CCTV installation sample: 4CH DVR, harddisk500Gb, IR Dome camera, video cable, power supply(12v.1 Amp.)	3
12	Projector, screen	
13	MCB,ELCB	9
14	For practical related to simulation use	

7. UNDERPINNING THEORY COMPONENTS

The following topics/subtopics is to be taught and assessed in order to develop UOs for achieving the COs to attain the identified competency:

Unit	Unit Outcomes (UOs)in cognitive domain)	Topics and Sub-topics
------	--	-----------------------

DEPM			Semester IV
Unit -1 Maintenan ce Managem ent & troublesho oting Unit- II Fundamen	 la. Explain with sketch the steps of the given electronic equipment maintenance. 1b. Explain the maintenance policy for The given equipment. 1c. Choose the service option for the maintenance of the given Equipment with justification. ld. Describe the software installation procedure for the given equipment. 1e. Describe the procedure to troubleshoot the specified equipment 2a.Describe with block diagram the wiring diagram of the given 	 1.1 Objectives of maintena management; Service a maintenance laboratory 1.2 Maintenance policy: C Warranty and guarante service options 1.3 Interpreting the service manuals. 1.4 Troubleshooting proce 1.5 Fault finding tools and 1.6 Troubleshooting technimeasures. 1.7 Software Installation p policies. 2.1 Block, circuit, wiring/l specified equipment. 	and y. oncept of e; Equipment e and operation ss. instruments. iques and rocedure and
tals of troublesho oting	 equipment. 2b.Describe the procedure to locate the fault in the given equipment. 2c.Identify the relevant tools for troubleshooting of the given equipment. 2d. Choose the relevant measure to troubleshoot the given equipment with justification. 	2.2 General troubleshootin2.3 Fault finding tools.2.4 General troubleshootin2.5 General troubleshootin	g techniques. g measures.
Unit- III Maintenan ce of Electronic domestic appliances	 3a. Describe common steps of maintenance of the given home appliances. 3b. Describe common steps of installation of DTH. 3c. Describe common steps of installation of solar power system. 3d. Explain steps to install surveillance system. 3e. Describe the procedure to troubleshoot the specified electronics home appliances. 	 3.1 Maintenance of home a battery charger, water i emergency light system public address (PA) sy 3.2 Demonstration of offlin and DTH. 3.3 Installation of solar po 3.4 Mobile hardware. 3.5 Surveillance system- 0 	level controller, n, SMPS, stem. ne/online UPS wer system

DEPM			Semester IV
Unit-IV EDA tool and other simulation software	 4a. Write main features of the given EDA tool. 4b. Describe the procedure to use different windows to perform the given operations. 4c. Describe the procedure to Create new file in the given EDA tool software. 4d. Describe the procedure to Make changes in the given file. 	 4.1 Introduction to any of the [SCILAB, esim, spice, proteus, Oread, Multistic MATLAB or any other 4.2 Main Features of EDA create new file, run sin instrument. 4.3 Editing windows, funct 4.4 File formats, report gen given EDA tool. 	LabVIEW, im, TINA, r]. tool: open file, nulation, virtual tions, controls
Unit -V Circuit analysis using EDA Tools	 5a. Describe the procedure to Determine the current flowing through the component of the given circuit using Mesh analysis/Nodal. 5b. Calculate current through and voltage across component of the given RLC circuit to check the same with EDA tool. 5c. Describe the steps to use EDA tool to simulate the given type of rectifier. 5d.Sketch the MUX/DEMUX tree for the given number of input and output lines to simulate using EDA tool. 5e. Describe with sketches the process of making PCB for the given circuit. 	 5.1 Analog Circuit: DC an Mesh and Nodal; AC a RC and RLC circuit, po RMS value and Phase based circuits: invertin inverting amplifiers. 5.2 Digital Circuit: Boolea Logic Gates, Combinar Adder, subtractor, mul- decoder. Sequential cir 5.3 PCB: layout, etching, o mounting, soldering an 	nalysis - RL, eak value, value. Op-Amp g / non n expressions, tional circuit- tiplexer, rcuit- flip-flops drilling,

Note: To attain the COs and competency, above listed UOs need to be undertaken to achieve the 'Application Level ' and above of Bloom's 'Cognitive Domain Taxonomy.

8. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

- Not applicable –

9. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences (student's) portfolio which will be useful for their placement interviews:

- a. Prepare journals based on practical performed in laboratory.
- b. Discuss case study of any fault detection and rectification problem.
- c. Maintain the office electronic equipment.

d. Search internet websites about manufacturer, specifications and cost of the measuring and testing equipment.

e. Arrange visit to nearby service electronic industry and prepare the report.

10. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a. Massive open online courses (MOOCs) may be used to teach various topics/sub topics.
- b. 'L' in item No. 4 does not mean only the traditional lecture method, but different types of teaching methods and media that are to be employed to develop the outcomes.
- c. About 15-20% of the topics/sub-topics which is relatively simpler or descriptive in nature is to be given to the students for self-directed learning and assess the development of the COs through classroom presentations (see implementation guideline for details).
- d. With respect to item No. 9, teachers need to ensure to create opportunities and provisions for co-curricular activities.
- e. Guide student(s) in undertaking micro-projects.
- f. Demonstrate students thoroughly before they start doing the practice.
- g. Encourage students to refer different websites to have deeper understanding of the subject.
- h. Observe continuously and monitor the performance of students in Lab.

11. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based. However, in the fifth and sixth semesters, it should be preferably be *individually* undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should *not exceed three*. The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than *16 (sixteen) student engagement hours* during the course. The student ought to submit micro-project by the end of the semester to develop the industry-oriented COs. A suggestive list of micro-projects are given here. Similar micro-projects could be added by the concerned faculty:

- a. Preform for Logbook Each group will prepare preformed of logbook, preventive and corrective maintenance (for Any one equipment in laboratory)
- b. Prepare a flow chart for fault diagnosis of equipment/gadget available in the laboratory(CRO, Function generator, power supply etc.)
- c. Simulate and build circuit on general purpose PCB of Half adder
- d. Prepare annual maintenance record of UPS available in college/housing society
- e. Prepare proposal for installation and maintenance of EPABX system
- f. Prepare proposal for installation and maintenance solar photovoltaic module
- g. Design and simulate simple emergency light system using any EDA tool.

DEPM

Semester IV

DEPM

12. SUGGESTED LEARNING RESOURCES: -

Sr. No.	Title of Book	Author	Publication
1	Trouble Shooting Electronic Equipment: Includes Repair and	Khandpure, R.S.	Mcgraw-Hill Publishing, New Delhi, 2014, ISBN-
2	Troubleshooting and Maintenance of Electronics Eq I handbook of Repair and Maintenance Of Domestic Electronics Appliances equipment	Singh, K. Sudeep	Katson Book ,New Delhi, Reprint 2013, ISBN: 978-8188458639
3	I handbook of Repair and Maintenance Of Domestic	Sinha, Sakshi Bhushan	BPB Publications, New Delhi, 2016, ISBN:9788183335027
4	Electronic Instruments and System	Gupta, R.G.	Mcgraw-Hill Publishing New Delhi, 2014,ISBN:9780074636299
5	Network Analysis and Synthesis	Ghosh, S.P.; Chakrabarti, A.K.	McGraw Hill Education, New Delhi, 2014, ISBN: 9780070144781
6	Electronics Devices and Circuit Theory	Boylestad, Robert L.	Pearson Publication, New Delhi, 2015, ISBN: 9788131727003
7	The Complete PC Upgrade & Maintenance Guide	Mark, Minasi	Willey Publication, New Delhi, 2010, ISBN: 9788126506279

13. SOFTWARE/LEARNING WEBSITES

- a. Open-source EDA tool for circuit simulation:- www.esim.fossee.in
- b. Tutorial for e-sim software :- esim.wikia.com/wiki/Tutorial the basics of e-sim
- c. Scilab software:- www.scilab.org/download/latest
- d. Tina software official website:- https://www.tina.com
- e. LT spice software:-http://www.linear.com/designtools/software/#LTspice
- f. Open source hard ware project:- <u>http://www.electronics-</u> lab.com/downloads/circutedesignsimulation/?page=5 /
- g. Spectrum soft ware:- www.spectrum-soft.com/
- h. Troubleshooting support:- www.fixya.com
- i. Tutorial Combinational logic:- <u>www.clcctronics-tutorials.ws</u> > Combinational Logic
- j. Security camera:-<u>http://www.wikihow.com/Install-a-Sccurity-Camera-System-for-a-</u> Flouse
- k. Home theater:-<u>http://www.audioholics.com/projector-screen-reviews/how-to-mount-</u>projector-and-screen-in-home-theater