NOTE :

1. Answer question 1 and any FOUR from questions 2 to 7.
2. Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours

Total Marks: 100

1. (a) Test the convergence of the series $\sum_{n=2}^{\infty} \frac{1}{n \log n}$
(b) Solve the differential equation $y=x \frac{d y}{d x}+3\left(y^{2}+\frac{d y}{d x}\right)$
(c) Express the complex number $\frac{1}{2}(1+i)\left(1+i^{-8}\right)$ in the form a+ib.
(d) Determine the extreme value of the function $\sin x(1+\cos x)$.
(e) Evaluate $\lim _{x \rightarrow 1}\left(1-x^{2}\right)^{\frac{1}{\log (1-x)}}$.
(f) Find the area of the region enclosed by curves $x=y^{2}-2$ and $x=y$.
(g) Find the Eigen values of the matrix $A=\left[\begin{array}{ccc}2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1\end{array}\right]$.
2. (a) Determine whether u and v are orthogonal, parallel or neither where $u=(3,15)$ and $v=(-1,5)$.
(b) Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right]$ and hence find A^{-1}.
3. (a) Solve the following system of linear equations $3 x-2 y+4 z=5, \quad x+y+3 z=2, \quad-x+2 y-z=1$ by Cramer's rule
(b) Solve the differential equation $y^{\prime \prime}+2 y^{\prime}+2 y=0, y(0)=1, y^{\prime}\left(\frac{\pi}{2}\right)=0$.
4. (a) Find all possible values of c for the function $f(x)=x^{3}-x,[0,2]$ by the mean value theorem.
(b) Find the horizontal asymptotes of the function $f(x)=\frac{x^{3}-2}{|x|^{3}+1}$.
(c) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \tan \left(\frac{1}{n}\right)$.

$$
(6+6+6)
$$

5. (a) Sketch the curve $r=2+\cos 2 \theta$ and find the area that is enclosed.
(b) Find the equation of the ellipse which passes through the point $(\pm 4,0)$ and has eccentricity $\frac{1}{3}$ with x -axis as its major axis and centre at the origin.
(c) Using Maclaurin's theorem, expand $\log \left(\frac{1-x}{1+x}\right)$ up to the term containing x^{3}

$$
(6+6+6)
$$

6. (a) Find the area of the surface generated by rotating the curve $y=e^{x}, x \in[0,1]$ about the x -axis.
(b) Find vector equation, parametric equations and symmetric equation for the line containing the points $P=(1,2,-3)$ and $Q(3,-2,1)$.
(c) Evaluate $\int \sqrt[4]{x+5} d x$.

$$
(6+6+6)
$$

7. (a) Find the root of the equation $x^{4}+i=0$.
(b) Find the equation of foci and the equation of hyperbola with the vertices $(0, \pm 1)$ and asymptotes $\mathrm{y}=2 x$.
