NOTE :

1. Answer question 1 and any FOUR from questions 2 to 7.
2. Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours

Total Marks: 100

1. (a) Prove that for every two integers a and b, if a and b are odd, then $a b$ is odd.
(b) Consider the CFG
$S \rightarrow S S+|S S *| a$
Construct parse tree for string aa*a+
(c) Draw a DFA for $(111+100)^{*} 0$
(d) Generate quadruple table for given three address code.
$\mathrm{tl}=\mathrm{b} * \mathrm{c}$
$\mathrm{t} 2=\mathrm{a}+\mathrm{t} 1$
$\mathrm{t} 3=\mathrm{b}$ * c
$\mathrm{t} 4=\mathrm{d} / \mathrm{t} 3$
$\mathrm{t} 5=\mathrm{t} 2-\mathrm{t} 4$
(e) Prove the below given statement using mathematical induction.
$1+2+3+\ldots+n=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
(f) What is DAG (Direct Acyclic graph) ? Find out the syntax tree and DAG for the following expression.

$$
a+a *(b-c)+(b-c)^{*} d
$$

(g) What are the different phases of a Compiler?
2. (a) Construct a Syntax Directed Translation Scheme for a calculator that support + and * operations. Draw annotated parse tree for $3+5$ * 4 .
(b) Design a Turing machine to recognize all string given by (ab)*aba.
(c) List the roles of lexical analyzer.
3. (a) Consider the given Mealy machine:

Present state	Next state			
	$\mathrm{a}=0$		$\mathrm{a}=1$	
	Next State	Output	Next state	Output
$\rightarrow \mathrm{a}$	d	0	b	1
b	a	1	d	0
c	c	1	c	0
d	b	0	a	1

Construct Moore machine which is equivalent to it
(b) Construct Turing machine for $\left\{\mathrm{SS} \mid \mathrm{S} \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$.
(c) Design PDA for $L=\left\{\mathrm{WcW}^{R} \mid \mathrm{W} \in\{a, b\}^{*}, \mathrm{~W}^{R}\right.$ is reverse of W$\}$. $\quad(\mathbf{6}+\mathbf{6}+\mathbf{6})$
4. (a) Check, whether following DFA is minimized or not. If not, then get the minimized one.

(b) Explain Left factoring and Left recursion.
5. (a) Obtain LR(1) item set and CLR(1) parsing table for given grammar
$\mathrm{S} \rightarrow \mathrm{AA}$
$\mathrm{A} \rightarrow \mathrm{aA} \mid \mathrm{b}$
(b) Construct operator precedence table for given grammar
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}|\mathrm{E}-\mathrm{E}| \mathrm{E} * \mathrm{E}|\mathrm{E} / \mathrm{E}| \mathrm{E} \wedge \mathrm{E}|(\mathrm{E})| \mathrm{id}$
6. (a) Explain CNF. Convert given grammar in CNF.
$\mathrm{S} \rightarrow \mathrm{AACD}$
$\left.\mathrm{A} \rightarrow \mathrm{aAb}\right|^{\wedge}$
$\mathrm{C} \rightarrow \mathrm{aC} \mid \mathrm{a}$
$\mathrm{D} \rightarrow \mathrm{aDa}|\mathrm{bDb}| \wedge$
(b) Contract NFA for $\mathrm{a}^{+} \mathrm{b}(\mathrm{c} \mid \mathrm{d}) \mathrm{a}^{*} \mathrm{~b}$ using Kleene's theorem.
(c) Generate code for the following three-address sequence assuming that p and q are in memory locations:
$\mathrm{y}=$ *q $^{\text {q }}$
$\mathrm{q}=\mathrm{q}+4$
*p $=\mathrm{y}$
$\mathrm{p}=\mathrm{p}+4$

$$
(8+6+4)
$$

7. (a) Define pumping lemma and prove that $L=\left\{0^{i} 1^{j} \mid j=i\right.$ or $\left.j=2 i\right\}$ is not a regular language.
(b) Check given grammar is LL(1) or not.

$$
\mathrm{S} \rightarrow \mathrm{iEtSS} \mid \mathrm{a}
$$

$S^{\prime} \rightarrow$ es $\mid \epsilon$
$\mathrm{E} \rightarrow \mathrm{b}$
(c) Explain Input Buffering.

$$
(6+6+6)
$$

