C3-R4: MATHEMATICAL METHODS FOR COMPUTING

NOTE :

1. Answer question 1 and any FOUR from questions 2 to 7.
2. Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours
Total Marks: 100

1. (a) The inputto a binarycommunicationsystem, denoted by a random variable X, takes one of two values 0 or 1 with probabilities $\frac{3}{4}$ and $\frac{1}{4}$ respectively. Because oferrors caused by noise in the system, the output Y differs from the input occasionally. The behavior of the communication system is modeled by the conditional probabilities given below:
$P(Y=1 / X=1)=3 / 4, P(Y=0 / X=0)=7 / 8$
Find (i) $P(Y=1)$, (ii) $P(Y=0)$.
(b) A supermarket has two girls attending tosales at the counters. If the servicetimeforeachcustomer is exponential with mean 4 min and if peoplearrive in Poisson fashionat the rate of 10 per hour,
(i) What is the expectedpercentage of idletimeforeachgirl?
(ii) If the customer has to wait in the queue, what is the expectedlength of his waiting time ?
(c) Consider the following LP model:

Max. $z=5 x_{1}+2 x_{2}+3 x_{3}$
s. s.t. $x_{1}+5 x_{2}+2 x_{3} \leq b_{1} ; \quad x_{1}-5 x_{2}-6 x_{3} \leq b_{2} ; \quad x_{1}, x_{2}, x_{3} \geq 0$

The following optimal tableau corresponds tospecific values of b_{1} and b_{2}.

Basic	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	Solution
z	0	a	7	d	e	150
x_{1}	1	b	2	1	0	30
x_{5}	0	c	-8	-1	1	10

Determine the following:
(i) The right-handside values, b_{1} and b_{2}.
(ii) The optimal dual solution.
(iii) The elements a, b, c, d, e.
(d) Find the Fourier Transform of $F(u)=1$ for $|u|<u_{0}$ and is 0 otherwise.
(e) At what averagerate must a clerkin a supermarket workin ordertoensure a probability of 0.90 that the customerwillnot wait longer than 12 min ? It is assumed that there is only one counter at which customers arrive in a Poisson fashion at an average rate of 15 per hourand that the length of the serviceby the clerk has an exponential distribution.
(f) Using Fourier integral, show that $e^{-a x}=\frac{2 a}{\pi} \int_{0}^{\infty} \frac{\cos \lambda x}{\lambda^{2}+a^{2}} d \lambda ; a>0, x \geq 0$.
(g) If $\{\mathrm{X}(\mathrm{t})\}$ is a wide-sense stationaryprocess with autocorrelation $R(\tau)=A e^{-\alpha|\tau|}$, determine the second -order moment of the random variable $\mathrm{X}(8)-\mathrm{X}(5)$.
2. (a) If the joint pdf of (X, Y) is given by $f(x, y)=21 x^{2} y^{3}, 0 \leq x<y \leq 1$, find the conditional mean and conditional variance of X given that $\mathrm{Y}=\mathrm{y}, 0<\mathrm{y}<1$.
(b) In a singleServer queuing system with Poisson inputand exponentialservicetimes, if themeanarrivalrate is 3 calling units perhour, the expected service time is 0.25 h and the maximumpossiblenumber of calling units in the system is 2 , find $P_{n}(n \geq 0)$, average number of calling units in the system and in the queue and average waiting time in the system and in the queue.
3. (a) Use the Kuhn-Tucker conditions tosolve the followingnon-linear programming problems:

Max. $z=2 x_{1}-x_{1}^{2}+x_{2}$
s.t. $2 x_{1}+3 x_{2} \leq 6 ; 2 x_{1}+x_{2} \leq 4 ; x_{1}, x_{2} \geq 0$.
(b) A carservicingstation has 2 bays for servicing where service canbeoffered simultaneously. Because ofspace limitation, only 4 cars are acceptedfor servicing. The arrivalpattern is Poisson with 12 cars per day. The service time in both the bays is exponentiallydistributed with $\mu=8$ cars per day per bay. Find the average number of cars in the service station, the average number of cars waiting for service and the average time a car spends in the system.
4. (a) Using Laplace Transform, find the solution of the initialvalue problem:
$y^{\prime \prime}+t y^{\prime}-2 y=6-t ; \quad y(0)=0, y^{\prime}(0)=1$
given that $\mathrm{L}[\mathrm{y}(\mathrm{t})]$ exists.
(b) DefineRandomwalk and prove that the limitingform of random walk is the Wiener process.
(8+10)
5. (a) If X and Y are independentrandomvariablesfollowing $\mathrm{N}(8,2)$ andN $(12,4 \sqrt{ } 3)$ respectively, find the value of λ such that $\mathrm{P}(2 \mathrm{X}-\mathrm{Y} \leq 2 \lambda)=\mathrm{P}(\mathrm{X}+2 \mathrm{Y} \geq \lambda)$.
(b) Develop the BranchandBoundtreefor the followingproblemby taking x_{1} as the branching variableatnode 0 .

Max. $z=2 x_{1}+3 x_{2}$
s.t. $5 x_{1}+7 x_{2} \leq 35 ; 4 x_{1}+9 x_{2} \leq 36 ; x_{1}, x_{2} \geq 0$ and integer.
6. (a) (i) If the number of occurrences of an event E in an interval of length t is a Poisson process $\{\mathrm{X}(\mathrm{t})\}$ with parameter λ and if each occurrence of E has a constantprobability p of being recorded and the recordings are independent of each other, then prove that the number $N(t)$ of the recorded occurrences in t is also a Poisson process with parameter λ p.
(ii) A radioactivesource emits particles at a rate of 5 perminutein accordance with Poisson Process. Each particle emitted has a probability 0.6 of beingrecorded. Find the probability that 10 particles are recorded in $4-\mathrm{min}$. period.
(b) A man is at an integralpointon the x -axisbetween the originand the point 3. He takes a unitstepto the right with probability $1 / 3$ or to the left with probability $2 / 3$, unless he is at the origin, where he takes a step to the right to reach the point 2 . What is the probability that (i) he is at the point 1 after 2 walks? (ii) he is at the point 1 in the longrun?
7. (a) The inputsourceto a noisy communicationchannel is a randomvariable X over the four symbols $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$. The outputfrom this channel is a random variable Y over these same four symbols. The jointdistribution of these two random variables is as follows:

	$\mathbf{x}=\mathbf{a}$	$\mathbf{x}=\mathbf{b}$	$\mathbf{x}=\mathbf{c}$	$\mathbf{x}=\mathbf{d}$
$\mathbf{y}=\mathbf{a}$	$1 / 8$	$1 / 16$	$1 / 16$	$1 / 4$
$\mathbf{y}=\mathbf{b}$	$1 / 16$	$1 / 8$	$1 / 16$	0
$\mathbf{y}=\mathbf{c}$	$1 / 32$	$1 / 32$	$1 / 16$	0
$\mathbf{y}=\mathbf{d}$	$1 / 32$	$1 / 32$	$1 / 16$	0

(i) Write down the marginaldistributionfor X andcompute the marginal entropy $\mathrm{H}(\mathrm{X})$ in bits.
(ii) Writedown the marginaldistributionfor Y andcompute the marginal entropy $\mathrm{H}(\mathrm{Y})$ in bits.
(iii) What is the joint entropy $\mathrm{H}(\mathrm{X}, \mathrm{Y})$ of the two randomvariables in bits?
(iv) What is the conditional entropy $\mathrm{H}(\mathrm{Y} \mid \mathrm{X})$ in bits?
(v) What is the mutualinformationI(X; Y) between the two randomvariables in bits?
(b) For a given network, develop the backward recursive equation, anduseittofind the optimum shortest route.

