B0-R4 : BASIC MATHEMATICS

NOTE :

- 1. Answer question 1 and any FOUR from questions 2 to 7.
- 2. Parts of the same question should be answered together and in the same sequence.

Time	: 3	Hours	

Total Marks : 100

- 1. (a) Find an equation of the tangent line to the curve $y = \frac{2}{x}$ at the point (2, 1) on this curve.
 - (b) Find the Rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 8 & 7 & 0 & 5 \end{bmatrix}$.
 - (c) Find all the asymptotes of the curve $x^2y^2 xy^2 x^2y + x + y + 1 = 0$ parallel to the axis.

(d) Test the convergence of the series $\sum \frac{(n - \log n)^n}{2^n n^n}$.

(e) Find a formula for the inverse of $f(x) = \sqrt{3x-2}$ with x as the independent variable, and state the domain of f^{-1} .

(f) Solve the differential equation $(1+y^2)\frac{dx}{dy} = \tan^{-1}y - x$.

- (g) Find all the values of $\sqrt[3]{\frac{1+i}{\sqrt{2}}} + \sqrt[3]{\frac{1-i}{\sqrt{2}}}$. (7x4)
- 2. (a) Find the area of the region that is enclosed between the curves $y = x^2$ and y = x + 6.
 - (b) Find the solution of the system of equation

$$x + 3y - 2z = 0,$$

$$2x - y + 4z = 0,$$

$$x - 11y + 14z = 0$$

Using Gauss elimination method.

(8+10)

3. (a) Test the convergence of the series $\left(\frac{1}{2}\right)^2 + \left(\frac{1\cdot 2}{3\cdot 5}\right)^2 + \left(\frac{1\cdot 2\cdot 3}{3\cdot 5\cdot 7}\right)^2 + \dots \infty$.

(b) If
$$2\cos\theta = x + \frac{1}{x}$$
 and $2\cos\phi = y + \frac{1}{y}$ then prove that
 $x^{p}y^{q} + \frac{1}{x^{p}y^{q}} = 2\cos(p\theta + q\phi)$.
(9+9)

- 4. (a) Evaluate $\int \frac{x}{x^2 4x + 8} dx$.
 - (b) Find the angle between a diagonal of a cube and one of its edges.
 - (c) Find the area of the surface that is generated by revolving the portion of the curve $y = x^3$ between x = 0 and x = 1 about the *x*-axis.

5. (a) Find
$$\frac{dy}{dx}$$
 if $y = \frac{\sin x}{1 + \cos x}$.

(b) Find the value of K for which the following function

$$f(x) = \begin{cases} x^{k} \sin \frac{1}{x}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

- as (i) Continues at x = 0(ii) Derivable at x = 0
- (c) Suppose that f(x) is continuous and differentiable on the interval [-7, 0], that f(-7) = -3 and $f'(x) \le 2$. What is the largest possible value for f(0)?

- 6. (a) Find parametric equations of the line L passing through the points $P_1(2, 4, -1)$ and $P_2(5, 0, 7)$. Where does the line intersect the *xy*-plane ?
 - (b) Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} -3 & -7 & -5 \\ 2 & 4 & 3 \\ 1 & 2 & 2 \end{bmatrix}$. (9+9)
- 7. (a) Expand 5^x up to the first three non-zero terms of the series.
 - (b) Solve the differential equation y'' + y' 2y = 0, y(0) = 4, y'(0) = -5.
 - (c) Find an equation for the ellipse with foci $(0, \pm 2)$ and major axis with endpoints $(0, \pm 4)$. (6+6+6)