B5.2-R4 : AUTOMATA THEORY AND COMPILER DESIGN

NOTE :

1. Answer question 1 and any FOUR from questions 2 to 7.
2. Parts of the same question should be answered together and in the same sequence.

Time : 3 Hours
Total Marks : 100

1. (a) Draw DFA for given regular expression.
$(1+10+110)^{*} 0$
(b) What is the role of lexical analyzer ?
(c) Differentiate between Compiler and Interpreter.
(d) Let G be the grammar $\mathrm{S} \rightarrow 0 \mathrm{~B}|1 \mathrm{~A}, \mathrm{~A} \rightarrow 0| 0 \mathrm{~S}|1 \mathrm{AA}, \mathrm{B} \rightarrow 1| 1 \mathrm{~S} \mid 0 \mathrm{BB}$.

For the string 00110101, find
(i) the left most derivation,
(ii) the right most derivation, and
(iii) the derivation tree
(e) Generate the First() and Follow() set of the following grammar :
$\mathrm{A} \rightarrow \mathrm{B} \mid \mathrm{C}$
$\mathrm{C} \rightarrow(\mathrm{D})$
$\mathrm{B} \rightarrow \mathrm{n} \mid \mathrm{i}$
$\mathrm{D} \rightarrow \mathrm{DA} \mid \mathrm{A}$
(f) Explain Peephole optimization.
(g) Which layer is responsible for generating three address code? Why the name is given Three Address code? Generate three address code for following statement. $x=(5+a *(b-c / d)) / e$.
2. (a) Construct a minimum state automaton equivalent to an automaton whose transition table is defined as below.

State \backslash input \rightarrow		a
\rightarrow	q0	q1
q1	q1	q2
q2	q3	q3
q3	q1	q4
q4	q4	q5
q5	q6	q2

(b) Prepare SLR (1) parsing table for given grammar.
$\mathrm{S} \rightarrow \mathrm{dA}|\mathrm{aB}, \mathrm{A} \rightarrow \mathrm{bA}| \mathrm{c}, \mathrm{B} \rightarrow \mathrm{bB} \mid \mathrm{c}$
3. (a) Convert the following grammar into CNF.
$S \rightarrow$ aAbB,
$\mathrm{A} \rightarrow \mathrm{aA}|\mathrm{a}, \mathrm{B} \rightarrow \mathrm{bB}| \mathrm{b}$
(b) Construct a PDA accepting the set of all strings over $\{\mathrm{a}, \mathrm{b}\}$ with equal number of a's and b's.
4. (a) Design a Turing machine M to recognize the language. $\left\{1^{\mathrm{n}} 2^{\mathrm{n}} 3^{\mathrm{n}} \mid \mathrm{n}>=1\right\}$.
(b) Describe the storage allocation strategies.
5. (a) Prepare LALR (1) parsing table for given grammar.
$\mathrm{S} \rightarrow \mathrm{Aa}|\mathrm{bAc}| \mathrm{dc} \mid \mathrm{bda}, \mathrm{Ad} \rightarrow$
(b) How Basic Blocks are optimized?
6. (a) Which are the design issues of code generation? Explain in detail.
(b) Describe the terms with example : basic blocks and flow graphs.
7. Solve any three of the following :
(a) Eliminate Left recursion from following grammar. $\mathrm{S} \rightarrow(\mathrm{L})|\mathrm{x}, \mathrm{L} \rightarrow \mathrm{L}, \mathrm{S}| \mathrm{S}$
(b) Describe the Syntax directed definition, and Syntax directed Translation, taking an example.
(c) Explain S-attributed definitions and L-attributed definitions.
(d) Choose the correct way to simplify the given grammar and simplify it $\mathrm{S} \rightarrow \mathrm{AB}, \mathrm{A} \rightarrow \mathrm{a}, \mathrm{B} \rightarrow \mathrm{b}, \mathrm{C} \rightarrow \mathrm{d}$

