C0-R4.B1 : ELEMENTS OF MATHEMATICAL SCIENCES

NOTE :

1. Answer question 1 and any FOUR from questions 2 to 7.
2. Parts of the same question should be answered together and in the same sequence.

Time : 3 Hours

Total Marks : 100

1. (a) Using Cramer's rule, find the solution of system of simultaneous linear equations :
$x-7 y=3,-x+y=-9$
(b) Evaluate the following :
(i) $\lim _{x \rightarrow 0} \frac{\sqrt[3]{1+x}-1}{x}$
(ii) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x \sin x}$
(c) Find all vertical and horizontal asymptotes of the family of curves :
$\frac{a^{2}}{x^{2}}+\frac{b^{2}}{y^{2}}=1$
(d) Decide whether the following equations represent parabola, ellipse or hyperbola:
(i) $3 x^{2}-18 x y+27 y^{2}-5 x+7 y+4=0$
(ii) $2 x^{2}-\sqrt{15} x y+2 y^{2}+x+y=0$
(e) Evaluate $\int_{0}^{\ln 2} \frac{e^{4 x}+2 e^{2 x}-e^{x}}{e^{2 x}+1} d x$.
(f) Check the convergence of the alternating series :

$$
\sum_{n=1}^{\infty} \frac{\cos n \pi}{n^{2}+1}
$$

(g) If the sum of mean and variance of a Binomial distribution is 4.8 for 5 trials, find the probability of obtaining at least 4 successes.
2. (a) Find the inverse of the following matrix by Gauss-Jordan Elimination method :
$\left[\begin{array}{ccc}-1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4\end{array}\right]$
(b) Is the set of vectors [12 4], [2-13], [01 12 2] and [-3 772$]$ linearly dependent ? If so, find the relation between them.
(c) Find the Eigen values and Eigen vectors of the matrix :
$\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$
3. (a) Sketch the graph of the function $y=\cos \frac{\pi x}{2}$. Also, find the period of the function.
(b) Find the values of λ so that the function

$$
f(x)= \begin{cases}\frac{\lambda \cos x}{\pi-2 x}, & x \neq \pi / 2 \\ 5, & x=\pi / 2\end{cases}
$$

is continuous at $x=\pi / 2$.
(c) Find the two points where the curve $x^{2}+x y+y^{2}=7$ crosses the x-axis and show that the tangents to the curve at these points are parallel. What is the common slope of the tangents ? Also, find the equations of the tangents at these points ?
(d) Find the area of the region bounded by the curve $y=2-x^{2}$ and the line $y=-x$.
$(4+4+5+5)$
4. (a) Find a Cartesian equation of the hyperbola centered at origin that has a focus at $(3,0)$ and the line $x=1$ as a corresponding directrix.
(b) The position $\mathrm{P}(x, y)$ of a particle moving in $x y$-plane is given by the equations and the parametric intervals
$x=\sqrt{t}, y=t, t \geq 0$
Identify the path traced by the particle and describe the motion.
(c) Find the Cartesian equations to the following Polar equations:
(i) $r^{2}=4 r \cos \theta$,
(ii) $r=\frac{4}{2 \cos \theta-\sin \theta}$
$(6+6+6)$
5. (a) Discuss the convergence of the series :

$$
\frac{1^{2}}{2^{2}}+\frac{1^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2}} x+\frac{1^{2} \cdot 3^{2} \cdot 5^{2}}{2^{2} \cdot 4^{2} \cdot 6^{2}} x^{2}+\ldots \infty
$$

(b) Expand $\ln (1+\sin x)$ by Maclaurin's theorem.
(c) Estimate X when $Y=10$, if the two lines of regression are $18 X+Y=18 \lambda$ and $2 X+Y=\mu$, where λ and μ being unknowns and mean of the distribution is at $(-1,2)$. Also, find the values of λ, μ and coefficient of correlation.
6. (a) A petrol pump is supplied with petrol once a day. If its daily volume X of sales in thousands of litres is distributed by :

$$
f(x)=5(1-x)^{4}, 0 \leq x \leq 1
$$

what must be the capacity of its tank in order that the probability that its supply will be exhausted in a given day shall be 0.01 ?
(b) If X is uniformly distributed with mean 1 and variance $4 / 3$, find $\mathrm{P}(X<0)$.
(c) If X is a Poisson variate such that $\mathrm{P}(X=2)=9 \times \mathrm{P}(X=4)+90 \times \mathrm{P}(X=6)$. Find the mean value of X. Also, find $P(X>0)$.
7. (a) In the two large populations, there are 30% and 25% respectively of blue-eyed people. Is the difference likely to be hidden in samples of 1200 and 900 respectively from the two populations ?
(b) A die is thrown 60 times with the following results:

Face	1	2	3	4	5	6
Frequency	8	7	12	8	14	11

Test at 5% level of significance if the die is honest, assuming that $\mathrm{P}\left(\chi^{2}>11.1\right)=0.05$ with 5 d.f.

