No. of Printed Pages: 2

Sl. No.

C7-R4: DIGITAL IMAGE PROCESSING AND COMPUTER VISION

NOTE:

1. Answer question 1 and any FOUR questions from 2 to 7.

2. Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours Total Marks: 100

- **1.** (a) What do you understand by scotopic vision and photopic vision in terms of brightness adaptation?
 - (b) Briefly explain Average filter with example.
 - (c) Explain the utility of Multiple Thresholding.
 - (d) What is the difference between least squares error and mean squared error?
 - (e) Explain different types of digital images.
 - (f) What are the components of Human Visual System?
 - (g) Explain the utility of Correlation in computer vision.

(7x4)

- **2.** (a) Given an image of size X*Y. Find the number of bits required to store it as binary, G-bit gray and color image respectively.
 - (b) What are the various distortions that can occur at the time of image acquisition? Explain.
 - (c) For $V = \{1, 2\}$, find the shortest path length using 4, 8 and m-adjacency between p and q for the given image

3	1	2	1(q)
2	2	0	2
1	2	1	1
1(p)	0	1	2

(6+6+6)

- 3. (a) Describe the objective function and steps of K-means clustering algorithm.
 - (b) Elaborate Min, Max and Median filters. Apply Min, Max and Median filters each of size 3X3 on the given 6X6 image segment and compare the output.

1	4	0	1	3	1
2	2	4	2	2	3
1	0	1	0	1	0
1	3	1	0	2	2
2	5	3	1	2	5
1	1	4	2	3	0

(c) A fisherman is looking a fish at a 2 m height and sitting at a distance of 10 meter. Find the size of the image formed in the retina. (6+6+6)

Page 1 C7-R4/01-23

- **4.** (a) Explain the role of Hough Transformation in Edge detection.
 - (b) Explain the process of convolution in image processing.
 - (c) Suppose that a 3-bit image (L=8) of size 10×20 pixels (XY = 200) has the intensity distribution shown in following table. What would be the intensity distribution of the new transformed image after the histogram equalization process?

Gray levels	0	1	2	3	4	5	6	7
Number of Pixels	50	0	50	0	50	0	50	0

- **5.** (a) Filters are applied in spatial and frequency domain both to enhance the quality of images. What is the relationship between them? Explain briefly.
 - (b) What are the various properties of Multiresolution analysis? Briefly describe Haar Wavelet transform.
 - (c) How to transform the image from RGB to HIS space? (5+8+5)
- **6.** (a) Explain the role of Affine Transformation in the field of computer Vision.
 - (b) Compute the Compression ratio or degree of the following given image using Huffman and Run length coding.

3	3	3	2
2	3	3	3
3	2	2	2
2	1	1	0

(8+10)

(6+6+6)

- 7. (a) What is the role of active and snake contours in an image?
 - (b) Explain Opening and Closing operations with example.
 - (c) What do you mean by motion estimation? Briefly explain the methods used for motion estimation. (6+6+6)