1. (a) Reduce $1-\cos \alpha+i \sin \alpha$ to the modulus and amplitude form.
(b) If $\mathrm{A}=\left[\begin{array}{rr}1 & 2 \\ 4 & -3\end{array}\right]$ and $f(x)=2 x^{2}-4 x+5$, then find the value of $f(\mathrm{~A})$.
(c) If $1, \omega, \omega^{2}$ are the cube roots of the unity, then find the value of $\left|\begin{array}{ccc}1 & \omega^{n} & \omega^{2 n} \\ \omega^{2 n} & 1 & \omega^{n} \\ \omega^{n} & \omega^{2 n} & 1\end{array}\right|$.
(d) Find the value of $\int e^{-\ln x} \mathrm{~d} x$.
(e) Find the value of $\operatorname{Limiti}_{n \rightarrow \infty}\left[\frac{4^{n}-3^{n}}{4^{n}+3^{n}}\right]$.
(f) Solve the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1+y^{2}}{1+x^{2}}$.
(g) Find a parametric equation for the line which passes through the point $(5,2,4)$ and parallel to the vector $\mathrm{v}=4 \hat{i}+7 \hat{j}-9 \hat{k}$.
2. (a) Find the real values of x and y so that $-3+i x^{2} y$ and $x^{2}+y+4 i$ may represent complex conjugate numbers.
(b) If z_{1}, z_{2}, z_{3} be the vertices of an isosceles triangle, right angled at z_{2}, prove that $z_{1}^{2}+z_{3}^{2}+2 z_{2}^{2}=2 z_{2}\left(z_{1}+z_{3}\right)$.
(c) Show that the roots of the equation $(x-1)^{n}=x^{n}$, n being a positive integer are $\frac{1}{2}\left(1+i \cot \frac{r \pi}{n}\right)$, where r has the values $1,2,3, \ldots, n-1$.
(d) Find the values of λ for which the equations

$$
\begin{aligned}
(\lambda-1) x+(3 \lambda+1) y+2 \lambda z & =0 \\
(\lambda-1) x+(4 \lambda-2) y+(\lambda+3) z & =0 \\
2 x+(3 \lambda+1) y+3(\lambda-1) z & =0
\end{aligned}
$$

are consistent, and find the ratios of $x: y: z$ when λ has the smallest of these values.
3. (a) Find the characteristic equation of the matrix $A=\left|\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right|$ and hence find the matrix represented by $A^{8}-5 A^{7}+7 A^{6}-3 A^{5}+A^{4}-5 A^{3}+8 A^{2}-2 A+I$.
(b) Find the value of $\operatorname{Limit}_{x \rightarrow 0} \frac{x\left(1-\sqrt{1-x^{2}}\right)}{\sqrt{1-x^{2}}\left(\sin ^{-1} x\right)^{3}}$.
(c) Find the value of the derivative of $f(x)=|x-1|+|x-3|$ at $x=2$.
(d) If $x \sqrt{1+y}+y \sqrt{1+x}=0$, then find the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x.
4. (a) Find the volume of the largest possible right-circular cylinder that can be inscribed in a sphere of radius a.
(b) Find the asymptotes of the curve $x^{3}+3 x^{2} y-4 y^{3}-x+y+3=0$.
(c) Evaluate $\int_{0}^{\pi} \cos 2 x \cdot \log (\sin x) \mathrm{d} x$.
(d) Find the area common to the parabola $y^{2}=\mathrm{a} x$ and the circle $x^{2}+y^{2}=4 \mathrm{a} x$.
(e) Find the length of the arc of the parabola $x^{2}=4 a y$ measured from the vertex to one extremity of the latus rectum.
5. (a) Find the volume formed by the revolution of the loop of the curve $y^{2}(\mathrm{a}+x)=x^{2}(3 \mathrm{a}-x)$ about the x-axis.
(b) Test the convergence of the following series.
(i) $\frac{1}{2 \sqrt{1}}+\frac{x^{2}}{3 \sqrt{2}}+\frac{x^{4}}{4 \sqrt{3}}+\frac{x^{6}}{5 \sqrt{4}}+\ldots .$.
(ii) $\frac{1}{\log 2}-\frac{1}{\log 3}+\frac{1}{\log 4}-\frac{1}{\log 5}+\ldots .$.
(c) Write the statement of Integral Test and use it to show that the series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is convergent if $p>1$ and divergent if $p \leq 1$.
(d) Expand $\log _{e} x$ in powers of $(x-1)$.
6. (a) Find the solution of the boundary value problem $x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=y^{2} \log x, y(1)=1$.
(b) Find the solution of the following differential equations :
(i) $\left[\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+y\right]^{3}=0$.
(ii) $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+6 \frac{\mathrm{~d} x}{\mathrm{~d} t}+9 x=0$.
(c) Find the length of the curve $x=\mathrm{tsint}, y=$ tcost from $\mathrm{t}=0$ to $\mathrm{t}=2 \pi$.
(d) Find the equation of the tangent to the curve $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at point $(a \cos \theta, b \sin \theta)$.

$$
(4+[3+3]+4+4)
$$

7. (a) The focal distance of a point on the parabola $y^{2}=12 x$ is 4 . Find the abscissa of the point.
(b) If the angle between the lines joining the foci of an ellipse to an extremity of the minor axis is 90°, then find the eccentricity of the ellipse.
(c) If $|\vec{a}|=2,|\vec{b}|=7$ and $\vec{a} \times \vec{b}=3 \hat{i}+2 \hat{j}+6 \hat{k}$, then find the angle between \vec{a} and \vec{b}.
(d) Let $\vec{a}=4 \hat{i}+3 \hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}+2 \hat{k}$. Then find a unit vector \hat{n} which is perpendicular to vectors \vec{a} and \vec{b} both.
(e) Find the equation of the plane which passes through the point $(3,-3,1)$ and is perpendicular to the planes $7 x+y+2 z=6$ and $3 x+5 y-6 z=8$.
$(4+4+3+3+4)$
