B0.1-R5 : BASIC MATHEMATICS

NOTE :

1. Answer question 1 and any FOUR questions from 2 to 7.
2. Parts of the same question should be answered together and in the same sequence.

Time : 3 Hours

Total Marks : 100

1. (a) Examine the convergence of the series $2-\frac{3}{2}+\frac{4}{3}-\frac{5}{4}+\ldots$.
(b) Find the rank of the matrix $\left[\begin{array}{rrr}1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & -1\end{array}\right]$.
(c) Solve the following system of simultaneous linear equations by Cramer's rule :

$$
\begin{align*}
& 2 x-3 y=2 \tag{3}\\
& 3 x-2 y=8 \tag{3}
\end{align*}
$$

(d) If a point $P(a, b)$ lies on the line $3 x+2 y=13$ and another point $\mathrm{Q}(b, a)$ lies on the line $4 x-y=5$, then find the equation of straight line PQ.
(e) Find the domain and range of the function $f(x)=\sqrt{16-25 x^{2}}$.
(f) Find the projection of the vector $\hat{i}+3 \hat{j}-2 \hat{k}$ on the vector $2 \hat{i}-6 \hat{j}+3 \hat{k}$.
(g) Find the angle of intersection of the curve $x^{2}=2 y$ and $y^{2}=16 x$.
(h) Evaluate $\int_{0}^{1} \frac{\sin ^{-1} x}{x} d x$.
(i) Find the area of triangle whose vertices are $\mathrm{A}(1,2,3), \mathrm{B}(2,-1,4)$ and $C(4,5,-1)$.
2. (a) Discuss the convergence of the series $\sum_{n=2}^{\infty} \frac{1}{n\left(\log _{\mathrm{e}} n\right)^{p}},(\mathrm{p}>0)$
(b) Discuss the convergence of the series $1+\frac{2!}{2^{2}}+\frac{3!}{3^{3}}+\frac{4!}{4^{4}}+\ldots$
(c) Find the parametric and symmetric equation of the line that passes through the point $(1,-3,2)$ in the direction of the vector $\vec{v}=\hat{j}-2 \hat{k}$.
(d) Find the equation of the plane which passes through the point $(3,-3,1)$ and is perpendicular to the planes $7 x+y+2 z=6$ and $3 x+5 y-6 z=8$.
3. (a) Find the Eigen values and Eigen vectors of the matrix $\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$.
(b) Find the values of p for which the system of simultaneous linear equations

$$
\begin{align*}
& (p-1) x+(3 p+1) y+2 p z=0 \\
& (p-1) x+(4 p-2) y+(p+3) z=0 \\
& 2 x+(3 p+1) y+3(p-1) z=0 \tag{6}
\end{align*}
$$

has non-trivial solution. Also find the ratio $x: y: z$ when p has the smallest of these values.
(c) Prove that $\left|\begin{array}{ccc}1+a^{2}-b^{2} & 2 a b & -2 b \\ 2 a b & 1-a^{2}+b^{2} & 2 a \\ 2 b & -2 a & 1-a^{2}-b^{2}\end{array}\right|$ is a perfect cube.
4. (a) Show that the equation $2 x^{2}-13 x y-7 y^{2}+x+23 y-6=0$ represents a pair of straight lines. Also find the angle between them and the co-ordinates of the point of intersection of the lines.
(b) Find the equation of the parabola whose co-ordinates of vertex and focus are $(-2,3)$ and $(1,3)$ respectively.
(c) Find the equations of tangent and normal to the circle $x^{2}+y^{2}-3 x+4 y-19=0$ at the point $(2,3)$.
(d) Graph the ellipse $\frac{(x+2)^{2}}{4}+\frac{(y-5)^{2}}{9}=1$. Also, label the centre, vertices and foci.
5. (a) Using Maclaurin's Theorem, prove that $\ln \left(1+\mathrm{e}^{x}\right)=\ln 2+\frac{x}{2}+\frac{x^{2}}{8}-\frac{x^{4}}{192}+\ldots$
(b) If $\ln y=\operatorname{acos}^{-1} x$, show that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}=\left(\mathrm{a}^{2}+\mathrm{n}^{2}\right) y_{\mathrm{n}}$.
(c) If $0<a<b<1$, using Mean value theorem, prove that

$$
\begin{aligned}
& \frac{b-a}{1+b^{2}}<\tan ^{-1} b-\tan ^{-1} a<\frac{b-a}{1+a^{2}} . \quad \text { Hence show that } \\
& \frac{\pi}{4}+\frac{3}{25}<\tan ^{-1} \frac{4}{3}<\frac{\pi}{4}+\frac{1}{6} .
\end{aligned}
$$

6. (a) Find all the asymptotes of the family of curve $(x+y)^{2}(x+y+2)=x+y+2$.
(b) Show that the right circular cylinder of given surface including the ends and maximum volume is such that the radius of its base is half of its height.
(c) Find the value of \mathbf{a} if the function

$$
f(x)=\left\{\begin{array}{cc}
\frac{\tan x-\cot x}{x-\frac{\pi}{4}}, & x \neq \frac{\pi}{4} \\
\mathrm{a}, & x=\frac{\pi}{4}
\end{array}\right.
$$

$$
\begin{equation*}
\text { is continuous at } \quad x=\frac{\pi}{4} \text {. } \tag{4}
\end{equation*}
$$

(d) Find the area between the parabola $y^{2}=4 \mathrm{a} x$ and the line $x+y=3 \mathrm{a}$.
7. (a) Evaluate $\int_{0}^{1} \frac{\ln (1+x)}{1+x^{2}} d x$.
(b) Evaluate $\int_{0}^{\infty} \frac{1}{\left(x^{2}+\mathrm{a}^{2}\right)\left(x^{2}+\mathrm{b}^{2}\right)} d x$.
(c) If n is an odd natural number, prove that $\int_{0}^{\pi} \frac{x \sin n x}{\sin x} d x=\frac{\pi^{2}}{2}$
(d) Trace the curve $y^{2}(2 \mathrm{a}-x)=x^{3}$ and find the area between the curve and its asymptote.

