C0-R4.B1 : ELEMENTS OF MATHEMATICAL SCIENCES

NOTE :

1. Answer question 1 and any FOUR questions from 2 to 7.
2. Parts of the same question should be answered together and in the same sequence.

Total Time : 3 Hours

Total Marks : 100

1. (a) If $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$. Prove that $(2 A+3 B)^{3}=8 A+36 B$.
(b) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ if $y=\left(\log _{\mathrm{e}} x\right)^{\sin x}$.
(c) Evaluate $\int_{0}^{\frac{\pi}{2}} x \cdot \sin (x) \mathrm{d} x$
(d) Verify the mean value theorem for $f(x)=\log _{\mathrm{e}} x$ in [1, e].
(e) If vector $\overrightarrow{\mathrm{AB}}=5 \hat{i}+2 \hat{j}-6 \hat{k}$ and the coordinate of A are (1,2,2), find the coordinates of B.
(f) One card is drawn at random from a pack of well - shuffled deck of cards.

Let E: The card drawn is spade.

> F: The card drawn is an ace.

Are the event E and F are independent?
(g) Find the Eigen values of the matrix

$$
A=\left[\begin{array}{ll}
4 & 2 \tag{7x4}\\
3 & 3
\end{array}\right]
$$

2. (a) Show that the function defined by,

$$
f(x)=\left\{\begin{array}{cc}
\left(x^{2}-9\right) /(x-3), & x \neq 3 \\
6, & x=3
\end{array} \text { is continuous at } x=3 .\right.
$$

(b) Find the rank of the matrix.

$$
\left[\begin{array}{lll}
1 & 3 & 4 \\
2 & 4 & 6 \\
3 & 5 & 9
\end{array}\right]
$$

(c) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ of following.
(i) $x^{2}+y^{2}=\mathrm{a}^{2}$
(ii) $\quad x y-\log _{\mathrm{e}}(x y)=\log _{\mathrm{e}} 2$.
$(4+5+9)$
3. (a) Find mean and variance for the number of tails when a coin is tossed thrice.
(b) Solve the equation $\left|\begin{array}{ccc}3 x-8 & 3 & 3 \\ 3 & 3 x-8 & 3 \\ 3 & 3 & 3 x-8\end{array}\right|=0$
(c) Evaluate: $\int \frac{3 x}{(x-1)(x-2)(x-3)} \mathrm{d} x$
4. (a) Check whether the system of equations is consistent or not. If consistent find the solution.

$$
\begin{aligned}
& x+y+z=3 \\
& x+2 y+3 z=4 \\
& x+4 y+9 z=6
\end{aligned}
$$

(b) Evaluate: $\lim _{x \rightarrow 0}(x)^{x}$
(c) Using the method of integration, find the area bounded by the curves $|x|+|y|=1$.
5. (a) Discuss the convergence of following series.
$1+\frac{2!}{2^{2}}+\frac{3!}{3^{3}}+\frac{4!}{4^{4}}+\frac{5!}{5^{5}}+\ldots \infty$
(b) The following table shows the sales and expenditure of a company.

	Sale	Expenditure (Rs. Crores)
Mean	40	6
SD	10	1.5

If the Coefficient of correlation $r=0.9$. Estimate the likely sales for a proposed expenditure of Rs. 10 crores.
(c) A machine makes a product's component with a 1.6 cm standard deviation in length. From the output, a 64 -component random sample was taken, with a mean length of 90 cm . If the part is either less than 88 cm or more than 92 cm , the customer will refuse it. Does the 95% confidence interval guarantee that the customer will take all of the produced components ? The significant value at 5% is $Z_{a / 2}=1.96$.
6. (a) Use Cramer's rule to solve the following system of equations.
$3 x+y-z=1,5 x+2 y+3 z=2,8 x+3 y+z=3$
(b) Find the radius and center of the circle $x^{2}+y^{2}-4 x-8 y-45=0$
(c) Find the angle between vectors $\overrightarrow{\mathrm{a}}=2 \hat{i}+2 \hat{j}-\hat{k} \mathrm{~A}=2 i+2 j-k$ and

$$
\begin{equation*}
\overrightarrow{\mathrm{b}}=6 \hat{i}-3 \hat{j}+2 \hat{k} \cdot \mathrm{~B}=6 i-3 j+2 k \tag{6+6+6}
\end{equation*}
$$

7. (a) A speak the truth 8 times out of 10 times. He tossed a die. He report that it was 5 . What is the probability that it was actually 5 .
(b) Prove that $\int_{0}^{\frac{\pi}{2}} \sin 2 x \cdot \log _{\mathrm{e}}(\tan x) \cdot \mathrm{d} x=0$
(c) Test the convergence of series.

$$
\frac{1}{1.2 .3}+\frac{3}{2.3 .4}+\frac{5}{3.4 .5}+\ldots \infty
$$

