C7-R4 : DIGITAL IMAGE PROCESSING AND COMPUTER VISION

NOTE :

- 1. Answer question 1 and any FOUR questions from 2 to 7.
- 2. Parts of the same question should be answered together and in the same sequence.

Time : 3 Hours Total Marks : 100

- 1. (a) Explain with diagram, perspective projection.
 - (b) Differentiate Sampling and Quantization techniques used in image processing.
 - (c) Consider the two image subsets, S1 and S2, shown in the following figure. For $V = \{1\}$, determine whether these two subsets are :

(i)	4-adjacent,	(ii)	8-adjacent, or	(iii)	m-adjacent.

		S_1					S_2		
0	0	0	0	0	0	0	1	1	0
1	0	0	1	0	0	1	0	0	1
1	0	0	1	0	1	1	0	0	0
0	0	1	1	1	0	0	0	0	0
0	0	1	1	1	0	0	1	1	1

- (d) Find the number of bits to store a 512×512 image with 128 gray levels.
- (e) What is blind spot. How is it connected with the rods and cones in human eye.
- (f) Perform Histogram matching for an image based on specific image given below :

Given image

Gray Level	0	1	2	3	4	5	6	7
No of Pixels	790	1023	850	656	329	245	122	81

Specific image

Gray Level	0	1	2	3	4	5	6	7
No of Pixels	0	0	0	614	819	1230	819	614

(g) Differentiate Fourier transform and wavelet transform.

(7x4)

- **2.** (a) Give a geometric construction of the image P' of a point P given the two focal points F and F' of a thin lens.
 - (b) Show that rotation matrices are characterized by the following properties :
 - (i) the inverse of a rotation matrix is its transpose and
 - (ii) its determinant is 1
 - (c) Define edge detection. What are the different edge detection techniques used in image processing ? (6+6+6)
- **3.** (a) Discuss the region-based segmentation algorithm used to divide an image into regions.
 - (b) State & prove the convolution property of Fourier Transform.
 - (c) Explain gaussian filter with its proper working. (6+6+6)
- **4.** (a) Explain the following morphological operations :
 - (i) Hit and Miss transformations
 - (ii) Opening and Closing
 - (b) What do you mean by color image processing. Explain different color models used in it.
 - (c) The two texture images shown below are quite different, but their histograms are identical. Both images have size 80×80 , with black (0) and white (1) pixels. Suppose that both images are blurred with a 3×3 smoothing mask.
 - (i) Would the resultant histograms still be the same ?
 - (ii) If answer is no, either sketch the two histograms or give two table detailing the histogram component.

(6+6+6)

- 5. (a) Define Image Enhancement. Explain the following Enhancement operations :
 - (i) Bit Plane Slicing
 - (ii) Grey Level Slicing
 - (b) Show that the Laplacian defined as in Equation below is isotropic (rotation invariant).

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Use following equations to prove this.

$$x = x'\cos\theta - y'\sin\theta$$
$$y = x'\sin\theta - y'\cos\theta$$

Where θ is the angle of rotation.

- 6. (a) A file contains the following characters with the frequencies as shown in table below. If Huffman Coding is used for data compression, determine :
 - (i) Huffman Code for each character
 - (ii) Average code length
 - (iii) Length of Huffman encoded message (in bits)

Characters	Frequencies
а	10
e	15
i	12
0	3
u	4
S	13
t	1

(b) What is Haar Transformation. Compute Haar Transform for N = 8. (12+6)

- 7. (a) Explain all the fundamental steps of digital image processing with suitable diagram.
 - (b) Why DCT is preferred over DFT for image compression ?
 - (c) Describe active contour "Snakes" used to estimate the object boundary. Write only the energy function of it. (10+4+4)

(8+10)