C8-R4 : INFORMATION SECURITY

NOTE :

- 1. Answer question 1 and any FOUR questions from 2 to 7.
- 2. Parts of the same question should be answered together and in the same sequence.

Total Time : 3 Hours

Total	Marks	:	100
-------	-------	---	-----

			100
1.	(a)	Describe any 10 cyber-crime prevention tips.	
	(b)	What are the five principles of security ?	
	(c)	Explain the main properties of "Trustworthy" Encryption Systems.	
	(d)	What is a private key crypto system ? Explain with a suitable example.	
	(e)	How many permutations are used in a DES cipher algorithm ? How is permutations are used in the round-key generator ?	many
	(f)	Discuss the key management issues of public key cryptography	
	(\mathbf{r})	What is PSEUDO RANDOMNESS 2 Explain its importance in security sy	stom
	(8)	what is i SEODO-KANDOWINESS ? Explain its importance in security sy	(74)
2	(a)	Explain different types of attack that can happen on digital signature	(7x4)
2.	(b)	Describe briefly about direct digital signature.	
	(c)	Explain SCHNORR digital signature scheme with a suitable example.	
	(-)	I	(6+6+6)
3.	(a)	Explain two categories of attack that can occurred in MAC.	
	(b)	Explain Birthday paradox problem in cryptography with a suitable examp	ole.
	(c)	Explain HMAC algorithm with a suitable example.	
			(6+6+6)
4.	(a)	Explain about PRNGs.	
	(b)	Discuss about Linear Congruential Generators.	
	(c)	Explain stream cipher with an example.	
_			(6+6+6)
5.	(a)	Explain computer algebra system and its role in information security.	
	(b)	Explain Euclidean algorithm and its use with a suitable example.	on of
(((C)	biscuss inteal congruence. What algorithm can be used to solve an equal type $2x = h(mod n)^2$	
		ty pe ax = o(mou n)	(6+6+6)
6	(\mathbf{a})	Describe briefly about Diffie Hellman key exchange algorithm	· · · ·
0.	(a)	Explain RSA algorithm in detail	
	(c)	Explain Elgamal Cryptographic System.	
	(0)		(6+6+6)
7.	(a)	Differentiate between DES and Triple DES.	
	(b)	Explain Chinese Remainder Theorem in detail.	
	(c)	Describe a model for network security.	
	. /		(6+6+6)
		- 0 0 0 -	