NOTE:

- 1. Answer question 1 and any FOUR from questions 2 to 7.
- 2. Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours

Total Marks: 100

1.

- a) In a class of 25 students, 13 have taken mathematics, 9 have taken mathematics but not biology. Find the number of students who have taken mathematics and biology and those who have taken biology but not mathematics.
- b) Using principle of mathematical induction, prove that proposition (for $n \ge 0$):

$$P(n) = 2^{0} + 2^{1} + 2^{2} + 2^{3} + 2^{4} + \dots + 2^{n} = 2^{n+1} - 1.$$

c) Prove that
$$(A \times B) \cap (A \times C) = A \times (B \cap C)$$
.

- d) Find P(B/A) if (i) A is a subset of B (ii) A and B are mutually exclusive.
- e) Without using truth table, prove the logical equivalence of $[d \rightarrow ((-a) \land b) \land c]$ and $\neg [(a \lor (\neg (b \land c))) \land d].$
- f) Draw the Hasse diagram of divisors of 70 and show that the set of all divisors of 70 form a lattice.
- g) Show that the argument $p \rightarrow q$, $\neg p \mid \rightarrow \neg q$ is a fallacy.

(7×4)

2.

a) Solve the recurrence relation $t_n = 5t_{n-1} - 8t_{n-2} + 4t_{n-3}$ for $n \ge 3$,

subject to initial conditions $t_n = n$ if n = 0, 1, and 2.

- b) Given A= $\{1, 2, 3, 4\}$ and B= $\{x, y, z\}$. Let R be the following relation from A to B,
 - $\mathsf{R} = \{(1, y), (1, z), (3, y), (4, x), (4, z)\}.$
 - i) Determine the matrix of the relation R.
 - ii) Draw the arrow diagram of R.
 - iii) Find the inverse relation R^{-1} of R.
 - iv) Determine the domain and range of R.

(10+[4x2])

3.

- a) Show that the set of all positive rational numbers forms an abelian group under the composition * defined by $a * b = \frac{ab}{4} \forall a, b \in \mathbf{Q}^+$.
- b) Prove the relation R in the set N of natural numbers defined by $a R b \Leftrightarrow (a b)$ is divisible by *n* where n ϵ *N* is an equivalence relation.

(9+9)

4.

- a) An urn contains 9 red, 7 white and 4 black balls. A ball is drawn at random. What is the probability that the ball drawn will be
 - i) Red
 - ii) White
 - iii) White or Black
 - iv) Red or Black
- b) Show that the maximum number of edges in a simple graphs with *n* vertices is $\frac{n(n-1)}{2}$.
- c) Can a simple graph exist with 15 vertices, each of degree 5? Justify.

(8+5+5)

5.a) Find the minimum spanning tree (MST) for the following weighted graph using Kruskal's algorithm. Also explain the steps involved.

- b) i) Draw a graph with six vertices which is Hamiltonian but not Eulerian.
 - ii) Draw a graph with six vertices which is Eulerian but not Hamiltonian.

(10+[4+4])

6.

a) Let M be the automaton as follows, where A is the input set, S is the state set, and Y is the accepting (yes) state: A= {a, b}, S=[s_0, s_1 s_2], Y= {s_1}. Suppose s_0 is the initial state of M and next state function F of M is given in the following table.

F	а	b]
S ₀	S ₀	S ₁	ļ
S ₁	S ₁	S ₂	ſ
S ₂	S ₂	S ₂	J

- i) Draw the state diagram D (M) of the automaton M.
- ii) Describe the language L (M) accepted by the automaton M.
- b) Let A = {0, 1}, construct a finite state automaton M such that L (M) will consists of
 i) those words in which number of 0's and 1's are even.
 - ii) those words in which number of 1's are odd.

([5+4]+[5+4])

7.

a) Let a and b be the positive integers, and Q is defined recursively as follows: (0) if a < b.

Q (a, b) =
Q (a, b) + 1, if
$$b \le a$$
.

- i) Find Q (2, 5).
- ii) Find Q (12, 5)
- iii) What does this function Q do? Also find Q (5861, 7).

b) Let E = xy' + xyz' + x'yz' is a Boolean expression, then prove that:

i)
$$xz' + E = E$$
 ii) $x + E \neq E$ iii) $z' + E \neq E$

c) Suppose $P(n) = a_0 + a_1 n + a_2 n^2 + \dots + a_m n^m$ has degree m. Prove that $P(n) = O(n^m)$.

([1+3+2]+[3x2]+6)

Ε