National Institute of Electronics & Information Technology, Aurangabad (राष्ट्रीयइलेक्ट्रॉनिकीएवंसूचनाप्रौद्योगिकीसंस्थान,औरंगाबाद) Ministry of Electronics & Information Technology Government of India ### **COURSE PROSPECTUS** Name of the Group: VLSI Design Name of the Course: Certified VLSI Design Engineer Course Code: 2022/EHW/NIELIT/06345 **Starting Date:** 14/08/2023 (Tentative) **Duration:**480 Hours Course Coordinator: Mr. Shashank Singh, Scientist B, NIELIT Aurangabad ### **Course Objectives:** • To provide detailed knowledge in semicustom IC design flow, digital logic design, hardware modeling using Verilog HDL, RTL coding, simulation and synthesis. - To provide in-depth knowledge in IP Core design, FPGA emulation and debugging. - To provide detailed knowledge in CMOS circuit design and IC layout techniques. - To give an overview of VLSI Verification techniques and methodologies. - Entrepreneurship Development. Moreover, the objectives of this course are aligned to the National Policy on Electronics (NPE) by the Govt of India. Please refer this page: http://meity.gov.in/esdm for more details. ### **Outcome of the Course: -** This course makes the successful participants readily employable in multiple roles available in broad spectrum of relevant industries like: - (a) VLSI Frontend and backend design - (b) FPGA Emulation/FPGA based embedded system design For people interested in entrepreneurships this would be an excellent launch pad. In addition, the course also serves as a concrete platform for people involved in application research, consultancy and high-end product development in both industry and academia. ### **Expected Job Roles:** - VLSI Design Engineer - FPGA Design Engineer - Physical Design Engineer - RTL Design Engineer ## National Institute of Electronics & Information Technology, # Aurangabad (राष्ट्रीयइलेक्ट्रॉनिकीएवंसूचनाप्रौद्योगिकीसंस्थान,औरंगाबाद) Ministry of Electronics & Information Technology **Government of India** ### **Course Structure:** | Sr.
No. | Module Title | Duration (Hours) | |------------|---|------------------| | 1 | Introduction To Digital Electronics | 35 | | 1 | Introduction to Number Systems, Logic Gates | 33 | | | Understanding Combinational Logic Circuit | | | | Designing -Adder, Subtractor, MUX, DEMUX, | | | | Encoder and Decoder etc. | | | | Understanding Sequential Logic Circuit Designing- | | | | Latches, Flipflops, Counter, Register etc. | | | | • Introduction to Finite state machine (FSM) | | | | Moore's Machine and Mealy's Machine. | | | 2 | Introduction To VLSI | 35 | | | Need, Scope, Use and History of VLSI | | | | Introduction to Chip Design Process | | | | Description of Hardware Description Languages | | | | Applications of VLSI | | | | VLSI Design Flow | | | | Moore's Laws | | | | VLSI Design Flow and Y-Chart | | | | Front-Back End VLSI Design | | | 3 | Verilog HDL | 50 | | | Overview of Digital Design with Verilog HDL | | | | Evolution of CAD | | | | Emergence of HDLs, typical HDL-based design | | | | flow | | | | Why Verilog HDL, trends in HDLs. | | | | Hierarchical Modeling Concepts | | | | Top-down and bottom-up design methodology | | | | Differences between modules and module instances | | | | Parts of a simulation, design block, stimulus block | | | | Basic Concepts Lexical conventions | | | | Data types, system tasks, compiler directives | | | | Modules and Ports Module definition | | | | Port declaration, connecting ports | | | | Hierarchical name referencing | | | 4 | Modeling Techniques | 70 | | | Gate-Level Modeling | | | | Modeling using basic Verilog gate primitives, | | | | description of and/or and buf/not type gates, rise | | ## National Institute of Electronics & Information Technology, # Aurangabad (राष्ट्रीयइलेक्ट्रॉनिकीएवंसूचनाप्रौद्योगिकीसंस्थान,औरंगाबाद) Ministry of Electronics & Information Technology Government of India | | • Fall and tum-off delays, min, max, and typical | | |---|---|----| | | delays. Dataflow Modeling • Continuous | | | | assignments | | | | • Delay specification, expressions, operators, | | | | operands, operator types | | | | Behavioural Modeling Structured procedures | | | | Initial and always, blocking and nonblocking | | | | statements | | | | Delay control, Event control | | | | • Conditional statements, multiway branching loops, | | | | sequential and parallel blocks | | | | Tasks and Functions | | | | Differences between tasks and functions | | | | Declaration, invocation | | | | Useful Modeling Techniques | | | | Procedural continuous assignments | | | | Overriding parameters | | | | Conditional compilation and execution | | | | Useful system tasks. | | | 5 | FPGA Architecture and Prototyping | 50 | | | Introduction to FPGA, Architecture | | | | Internal resource and Design Essentials | | | | • FPGA Input/output Blocks (IOBs), Special FPGA | | | | functions | | | | • Logic Synthesis, FPGA Programming with Verilog | | | | basics, Tool Training | | | | Different Voltage Requirement's for FPGA | | | | Different External memory devices architecture | | | | • IO Planning, Report analysis for Timing, Area and | | | | Power | | | | • CPLD, FPGA working, References, Design flow, | | | | Design tricks | | | | H/W components on FPGA board and their working | | | | • Designing basic FPGA examples (Adder, | | | - | Subtractor, Counter etc.) | 50 | | 6 | Introduction to the MOS Technology | 50 | | | Introduction to IC technology MOS, PMOS, NMOS, CMOS, & RicMOS, Technologies | | | | NMOS, CMOS &BiCMOS Technologies Pagin Floatrical Proportion of MOS and BiCMOS | | | | Basic Electrical Properties of MOS and BiCMOS
Circuits | | | | IDS - VDS relationships | | | | MOS transistor Threshold Voltage | | | | | | | | Figure of merit, TransconductancePass transistor | | | | • rass transistor | | ## National Institute of Electronics & Information Technology, # Aurangabad (राष्ट्रीयइलेक्ट्रॉनिकीएवंसूचनाप्रौद्योगिकीसंस्थान,औरंगाबाद) Ministry of Electronics & Information Technology Government of India | | CMOS Inverter analysis and designBi-CMOS Inverters | | |---|---|----| | | | | | | | | | | Transmission gates etc Device sizing timing perspectors | | | | Device sizing, timing parametersEstimation of layout resistance & capacitance | | | 7 | VLSI Circuit Design Processes | 70 | | ' | VLSI Design Flow | 70 | | | MOS Layers | | | | Stick Diagrams, Design Rules and Layout | | | | Lambda(λ)-based design rules for wires, contacts | | | | and Transistors | | | | Layout Diagrams for NMOS and CMOS Inverters | | | | and Gates | | | | Scaling of MOS circuits, Limitations of Scaling. | | | | Introduction to simulation tools | | | | Place and Route Extraction, LVS | | | | Netlist to GDS-II flow | | | | Device Generator Libraries | | | | SPICE Modelling, SPICE Tutorials and Commands | | | | Sources and Passive Components | | | | Inverter Transient | | | 8 | Design Verification UVM, OVM and AVM | 60 | | | Methodology | | | | Introduction UVM, UVM Object | | | | • UVM test Bench etc. | | | 1 | Introduction OVM, OVM Reporting | | | | | | | | OVM Transaction | | | | OVM Configuration etc. | | | | OVM Configuration etc.Need for File Inter Change | | | | OVM Configuration etc. Need for File Inter Change GDS2 Stream, Caltech Intermediate Format (CIF) | | | | OVM Configuration etc. Need for File Inter Change GDS2 Stream, Caltech Intermediate Format (CIF) Library Exchange Format (LEF) | | | | OVM Configuration etc. Need for File Inter Change GDS2 Stream, Caltech Intermediate Format (CIF) Library Exchange Format (LEF) Design Exchange Format (DEF), Standard Delay | | | | OVM Configuration etc. Need for File Inter Change GDS2 Stream, Caltech Intermediate Format (CIF) Library Exchange Format (LEF) | | | | OVM Configuration etc. Need for File Inter Change GDS2 Stream, Caltech Intermediate Format (CIF) Library Exchange Format (LEF) Design Exchange Format (DEF), Standard Delay Format (SDF), DSPF | | | | OVM Configuration etc. Need for File Inter Change GDS2 Stream, Caltech Intermediate Format (CIF) Library Exchange Format (LEF) Design Exchange Format (DEF), Standard Delay Format (SDF), DSPF SPEF, Advance Library Format (ALE), Waves Waveform and Vector Exchange | | | | OVM Configuration etc. Need for File Inter Change GDS2 Stream, Caltech Intermediate Format (CIF) Library Exchange Format (LEF) Design Exchange Format (DEF), Standard Delay Format (SDF), DSPF SPEF, Advance Library Format (ALE), Waves | | | 9 | OVM Configuration etc. Need for File Inter Change GDS2 Stream, Caltech Intermediate Format (CIF) Library Exchange Format (LEF) Design Exchange Format (DEF), Standard Delay Format (SDF), DSPF SPEF, Advance Library Format (ALE), Waves Waveform and Vector Exchange Specification, Physical Design Exchange Format, Open Access Employability Skills | 30 | | 9 | OVM Configuration etc. Need for File Inter Change GDS2 Stream, Caltech Intermediate Format (CIF) Library Exchange Format (LEF) Design Exchange Format (DEF), Standard Delay Format (SDF), DSPF SPEF, Advance Library Format (ALE), Waves Waveform and Vector Exchange Specification, Physical Design Exchange Format, Open Access Employability Skills Introduction to Employability Skills | 30 | | 9 | OVM Configuration etc. Need for File Inter Change GDS2 Stream, Caltech Intermediate Format (CIF) Library Exchange Format (LEF) Design Exchange Format (DEF), Standard Delay Format (SDF), DSPF SPEF, Advance Library Format (ALE), Waves Waveform and Vector Exchange Specification, Physical Design Exchange Format, Open Access Employability Skills | 30 | ### National Institute of Electronics & Information Technology, Aurangabad (राष्ट्रीयइलेक्ट्रॉनिकीएवंसूचनाप्रौद्योगिकीसंस्थान,औरंगाबाद) ## Ministry of Electronics & Information Technology Government of India | | Basic English Skills | | |----|---|-----------| | | Communication Skills | | | | Financial and Legal Literacy | | | | Entrepreneurship | | | | Diversity & Inclusion | | | | Constitutional values - Citizenship | | | | Essential Digital Skill | | | 10 | On Job Training | 30 | | | Total | 480 Hours | ### **Other Contents:** - **I.** Course Fees :Course fee is Rs 40,000 + GST (* Nil for SC/ST) - II. **Registration Fee:** Rs.1000/- (including all taxes as applicable) (*NIL for SC/ST) - III. Course Fee Installment Structure: Can be paid in two instalments - **IV. Eligibility:** B.E./B.Tech./MSc. in Electronics/Computer Science (All allied branches). (Final Year students can also apply) - V. Number of Seats :30 - VI. **Selection of candidates: The** candidates passed in the qualifying examination will be based on their marks obtained, subject to eligibility and availability of seats. - VII. **Test/Interview** (**if applicable**): Not Applicable - VIII. Counselling/Admission: Starting date of the course - IX. Important Dates (if applicable): | Starting date: | 14/08/2023 (Tentative) | |---------------------------------------|------------------------| | Last date to submit application form: | 11/08/2023 | | Counselling/Admission | 11/08/2023 | | Commencement of class work: | 14/08/2023 | | Payment of Fee | 11/08/2023 | **X. Course Timings**: 16:30 Hrs to 19:30 Hrs in week days. : 9.30 Hrs to 12.30 Hrs in week end days. **XI.** Placement: Support shall be provided XII. Lab Facilities: LIST OF EQUIPMENT (For a batch of 30 students) | Sr. NO. | Description | Qty | |---------|---------------|-----| | 1 | Classroom | 2 | | 2 | Student Chair | 30 | | 3 | Student Table | 15 | # National Institute of Electronics & Information Technology, Aurangabad (राष्ट्रीयइलेक्ट्रॉनिकीएवंसूचनाप्रौद्योगिकीसंस्थान,औरंगाबाद) Ministry of Electronics & Information Technology Government of India | 4 | Smart Interactive Display | 2 | |---|-----------------------------------|----| | 5 | White Board | 2 | | 6 | Desktop computer with accessories | 30 | | 7 | Basys 3 Artix-7 FPGA Board | 30 | ### XIII. Registration Details: - $https://docs.google.com/forms/d/1txAbGMtUdLyDIXRQV7Ta1RlbCYDHZrsN\\ Ml-NnjtL39M/edit?pli=1$