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Abstract Solar water pumps play a crucial role in sustainable agriculture, partic-
ularly in rural regions where reliable access to water and energy is limited. These
devices, fueled by renewable solar energy, provide an environmentally sustainable
and economical solution for irrigation. However, like any technological system, solar
water pumps are susceptible to various faults, including electrical, physical, and
environmental issues, which can compromise their efficiency and reliability. This
research article examines the utilization of machine learning methodologies to fore-
cast and identify malfunctions in solar water pump systems. This paper examines
five machine learning models: Logistic Regression, Support Vector Machine (SVM),
K-Nearest Neighbors (KNN), Decision Tree, and Random Forest—are evaluated for
their effectiveness in predicting three key fault types: electrical anomalies, including
open circuits; physical faults, including module degradation and cleaning needs; and
environmental faults, influenced by factors like wind velocity and temperature. This
research study uses sensor data collected from solar water pump systems, including
parameters such as current (I), voltage (V), temperature, and solar power. The results
show that random forest and logistic regression always achieve the best accuracy in all
fault parameters, which is suitable for fault prediction and preventive maintenance.
By accurately predicting potential failures, the intelligent system aims to reduce
downtime, lower operating costs, and increase the efficiency of solar water pumps.
This research paper provides important insights into the optimization of machine
learning models for fault prediction in renewable energy systems and advances the
overarching objective of fostering sustainability agriculture through technology.
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1 Introduction

1.1 Introduction

Solar water pumps have revolutionized modern agriculture offering a sustainable
and economical solution for irrigation in rural areas with limited access to reli-
able energy sources. By harnessing solar energy through photovoltaic panels, these
pumps provide several advantages, such as financial savings, less ecological footprint,
and energy autonomy. As climate change leads to unpredictable weather patterns,
solar water pumps provide resilience to farmers, enabling year-round irrigation
and improving food security. However, challenges remain, particularly in mainte-
nance and fault diagnosis. By implementing predictive maintenance using machine
learning, the reliability of these systems can be improved, ensuring optimal perfor-
mance and longevity. The integration of solar water pumps into agricultural systems
represents a crucial intersection between clean energy technology and sustainable
farming, with the potential for long-term benefits for the environment and the
economy. Solar water pumps are seen as a crucial tool in promoting the global
shift toward renewable energy and supporting rural livelihoods [1, 2].

Solar water pumps have become crucial in agriculture, offering an environmentally
friendly and economically viable solution for irrigation in areas with limited access
to electricity or fuel. By harnessing solar energy through photovoltaic panels, these
pumps draw water from various sources, reducing energy costs for farmers. The
environmental and financial benefits of solar water pumps include cost reduction,
environmental benefits by reducing carbon emissions, and increased productivity in
agriculture [3].

However, these pumps face maintenance challenges that can lead to downtime
and increased repair costs. The integration of machine learning for predictive fault
detection offers a enhance resolution the reliability and longevity of these systems.
By utilizing real time sensor data, machine learning models can accurately predict
and prevent potential system failures, ensuring continuous operation and reducing
maintenance costs. Research is ongoing to determine the most effective machine
learning techniques for predicting faults in solar water pumps, aiming to enhance their
role in promoting sustainable agriculture and renewable energy adoption globally
[4, 5].

1.2 Problem Statement

Solar water pump systems play a vital role in supporting agriculture in remote areas,
facing various operational challenges categorized as electrical, physical, and envi-
ronmental issues. These challenges exert a considerable influence on the reliability
and efficiency of the systems. Frequent electrical faults, such as open circuit faults,
short circuits, and inverter failures, can reduce operational efficiency and disrupt
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power flow, affecting the overall pump performance. Physical failures, including solar
panel degradation, pump component malfunctions, and loose electrical connections,
are often a result of regular use and inadequate maintenance, leading to decreased
performance, increased maintenance costs, and shortened system lifespan. Environ-
mental factors like dust accumulation, wind speed, and extreme temperatures also
contribute to system failures, diminishing efficiency and power output. It is essential
to address these operational failures through regular cleaning, proper maintenance,
and managing environmental conditions to ensure consistent power delivery, main-
tain pump performance, reduce maintenance costs, and extend system longevity.
Efficient fault detection and prediction mechanisms, including machine learning
methods for real-time fault prediction and maintenance, are crucial to improving the
reliability of solar water pump systems in agriculture. By addressing these faults, the
benefits of solar water pumps can be optimized, promoting their widespread use in
sustainable agricultural practices [6, 7].

1.3 Objective

This study utilizes machine learning to predict faults in solar heat pumps, aiming to
improve fault detection, efficiency, and minimize downtime. By analyzing real data,
the research aims to develop accurate models for detecting various types of faults.
Early detection can reduce maintenance time and prevent serious damage, while
predictive error detection can optimize system performance. Implementing proactive
maintenance strategies based on predictive analytics can reduce system downtimes,
ensuring a reliable water supply for agricultural applications. Additionally, the study
aims to support data-driven decision-making and promote sustainable agricultural
practices by enhancing the reliability and efficiency of solar water pumps.

1.4 Scope

Solar water pump systems require quick identification and troubleshooting to ensure
efficiency. This study focuses on three types of failures: electrical, physical, and
environmental. Electrical faults are a major concern and can disrupt system opera-
tion. Common faults include open circuit, short circuit, and inverter failure. Machine
learning methodologies such as support vector machine and random forest are used
for fault detection based on historical data. Physical defects result from mechan-
ical degradation over time, such as solar panel degradation, wear and tear of pump
parts, and loose electrical connections. Machine learning techniques like k-nearest
neighbors and decision trees analyze maintenance data and operating conditions
detect physical faults. Environmental factors like dust, wind speed, and extreme
temperatures can impact system performance. Machine learning techniques such
as logical regression and artificial neural networks can model probability of faults
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occurring based on environmental variables, providing insight into optimizing system
performance under changing conditions [10].

This study focuses on detecting faults in solar water pump systems using machine
learning methodologies. By categorizing faults into electrical, physical, and environ-
mental categories, the research aims to improve predictive maintenance and opera-
tional efficiency. Utilizing machine learning for fault prediction addresses challenges
faced by solar water pumps, promoting their use in agriculture. This research high-
lights the importance of technological advancements in optimizing renewable energy
systems for modern agriculture [11].

2 Literature Review

2.1 Defect Identification and Prediction in Solar Systems

Defect identification and prediction in solar energy systems are crucial for ensuring
system reliability, efficiency, and minimizing operational costs. Traditional methods
of fault detection, such as physical inspection and routine maintenance, are time-
consuming and limited in providing real-time monitoring. Data-driven approaches,
including statistical analysis and trend monitoring, have been utilized to identify
anomalies in system performance. Machine learning techniques, such as random
forests and support vector machines (SVM), have shown promise in accurately
predicting faults in solar systems.

Predictive maintenance frameworks combining machine learning with predictive
strategies are essential for improving system reliability. Hybrid models that integrate
various machine learning algorithms have been explored to enhance accuracy of
fault predictions. Quality of input data and feature selection play a significant role in
the effectiveness of machine learning models for fault prediction. Challenges in this
area include data quality and availability, as well as the real-time implementation of
machine learning models in solar systems.

Future research directions could focus on integrating Internet of Things (IoT)
sensors for continuous data streams and real-time analysis to improve the effec-
tiveness of predictive maintenance strategies. Overall, fault detection and prediction
in solar energy systems are essential for ensuring the reliability and efficiency of
renewable energy technologies.

Sr. | Focus area Methodology Key findings
no
1 | Electrical and Analyzed fault types | Identified common electrical and
physical faults [12] in solar water physical faults,
pumping systems » emphasizing the need for real-time
monitoring

(continued)
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(continued)
Sr. | Focus area Methodology Key findings
no
2 | Electrical faults in PV | Utilized Support * SVM effectively classifies electrical fault
systems [13] Vector Machine types with high accuracy, highlighting
(SVM) for fault the need for predictive maintenance
classification
3 | Degradation of solar | Performance analysis |* Degradation of solar panels can reduce
panels [14] under harsh efficiency by up to 20%, underscoring
environmental the importance of regular maintenance
conditions
4 | Predictive Review of machine * Machine learning significantly enhances
maintenance [15] learning applications predictive maintenance capabilities, with
data-driven approaches yielding
improved fault detection
5 | Fault detection Combination of * Hybrid models improve prediction
techniques [16] decision trees and accuracy and robustness
neural networks
6 | Fault diagnosis solar | Systematic review of | Identified key machine learning
water pumps [17] machine learning techniques for fault diagnosis,
applications emphasizing the importance of data
quality
7 | Environmental factors | Analyzed the effects | ¢ Environmental conditions significantly
impact [18] of environmental affect solar panel performance, requiring
factors on solar panel robust monitoring strategies
efficiency
8 | Temperature effects | Reviewed global * Temperature variations impact solar
on PV efficiency [19] | studies on panel efficiency, with significant drops

temperature influence

observed in extreme conditions

This presents different approaches used in fault analysis and prediction in solar

systems. Each study provides a thorough understanding of various uncertainties and
mechanisms and demonstrates the power of machine learning techniques increase
reliability and efficiency of solar applications. Collectively, these findings emphasize
the importance of continuous monitoring and predictive maintenance strategies to
enhance the efficiency of solar power systems.
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2.2 Utilization of Machine Learning in Predictive
Maintenance for Renewable Energy Technologies
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Sr. | Technology | Machine Application details Benefits Challenges
no learning
techniques
1 | Solar energy | Support Used to classify faults | Enhances fault Data quality and
[20, 8] vector in solar panels and detection and availability can
machines inverters based on enables timely be an issue
(SVM) operational data maintenance
(voltage, current)
2 Neural Predicts performance | Increases Requires large
networks degradation in solar | efficiency by datasets for
(ANNs) panels by analyzing | reducing effective training
historical downtime through
performance data proactive
maintenance
3 Random Identifies patterns of | Improves Complexity in
forest failures by processing | accuracy in fault | feature selection
large datasets with prediction
multiple features
4 | Wind energy | K-nearest | Analyzes vibration Reduces Data collection
[21] neighbors | and temperature data | downtime by up | and sensor
(KNN) to predict failures in | to 30% through placement can
wind turbine timely be challenging
components interventions
5 Deep Processes time-series | Captures Real-time data
learning data to forecast sequential processing can
(LSTM) mechanical failures in | patterns for better | be
turbine gearboxes predictive computationally
accuracy intensive
6 Decision Provides a visual Simplifies fault May not perform
trees representation of diagnosis and well with highly
decision rules based | decision-making | non-linear data
on operational processes
parameters
7 | Hydropower | Artificial Monitors conditions | Enables proactive | Complexity in
[22] Neural of turbines and maintenance, model training
Networks | generators, predicting | minimizing and integration
(ANNs) wear and tear through | operational with existing
historical disruptions systems
performance analysis
8 Regression | Analyzes historical Supports Requires
analysis data to model the decision-making | accurate

relationship between
operational
parameters and
component lifespan

for maintenance
scheduling

historical data
for effective
modeling

(continued)
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(continued)
Sr. | Technology | Machine Application details Benefits Challenges
no learning
techniques
9 Ensemble | Integrates many Enhances May increase
learning forecasting models to | robustness of computational
enhance precision in | predictions under | complexity
fault detection for varying
hydropower systems | operational
conditions

Machine learning is being applied to predictive maintenance for renewable energy
technologies to improve system reliability and efficiency. Techniques used in solar,
wind, and hydropower systems can detect faults early, reduce downtime, and support
sustainable power systems. Challenges like data quality and processing requirements
need to be addressed for machine learning to reach its full potential in this field.
Advances in data collection, algorithm development, and system integration are key
for future success in predictive maintenance for renewable energy technology.

2.3 Existing Studies on Solar Water Pumps and Related
Technologies

Solar water pumps have gained a lot of gained prominence in recent years due
to their capacity to offer sustainable and efficient water solutions for agriculture
and rural areas. This combines research findings on different aspects of solar water
pumps, including performance optimization, fault diagnosis, integration with IoT
technologies, economic feasibility, and case studies.

Research focus Key findings

Performance optimization [23] * Investigated the effects of different solar panel
configurations and pump types on efficiency

» Conducted a comparative analysis of various solar
water pumps, concluding that submersible pumps are
generally more efficient in deep well applications

* Emphasized the importance of selecting appropriate
pump sizes and configurations to maximize energy
efficiency

Reliability and fault detection [24, 9] | » Identified common electrical and physical faults,
emphasizing the need for enhanced monitoring and
maintenance strategies

Reviewed machine learning applications for predictive
maintenance in solar water pumping systems
Developed a framework for monitoring faults in solar
water pumps using IoT, enabling timely maintenance
actions

(continued)
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(continued)
Research focus Key findings
Integration with IoT [25] * Explored IoT-enabled solar water pumping systems for

real time monitoring and performance analysis

* Analyzed the execution of intelligent irrigation systems
using solar pumps and IoT sensors for improved water
management

Economic viability [26] Conducted a life cycle assessment of solar water
pumping systems, revealing significant environmental
benefits over diesel pumps

Provided a cost—benefit analysis comparing solar
pumps and traditional pumps, demonstrating long-term

savings with solar systems

Case studies [27]

Documented the adoption of solar water pumps in rural
India, discussing their socio-economic impacts on local
communities

Presented case studies of solar pump installations in
Africa, highlighting increased access to water and
improved agricultural productivity

Examined the deployment of solar water pumps in
Pakistan, reporting on the operational challenges and
community benefits observed

Current research on solar water pumps shows their potential to provide sustainable
and efficient solutions for irrigation and water supply. Research findings highlight
the importance of optimizing system performance, increasing reliability through
predictive maintenance, and using IoT technologies for real-time monitoring. The
cost of solar water pumps, supported by case studies, shows their long-term benefits
for agriculture and community development. Ongoing research and development in
this domain is essential to address the problems and enhance the adoption of solar
water pump technologies.

Focus area Earlier work Your work

Fault types Mostly electrical faults Electrical, physical, and
environmental faults

ML techniques Neural networks, SVM, random | Random forest, SVM, KNN,

forest Decision Tree, logistic

regression,

Accuracy metrics Partial, not all models compared | Accuracy and F1-scores
reported for all models

Advancement in prediction | Emphasis on individual models | Comparative analysis of
multiple models

The research focuses on fault prediction in solar water pump systems using
machine learning models like SVM, Random Forest, and Neural Networks. It
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analyzes three distinct fault types and compares their accuracy for specific cate-
gories. The study also introduces logistic regression for capturing linear relation-
ships across fault parameters, highlighting its effectiveness. The research confirms
previous studies’ findings on Random Forest’s strong performance and introduces
logistic regression as a key performer.

3 System Overview

3.1 Introduction

Solar power generation has emerged as a key player in the renewable energy land-
scape, offering a clean and sustainable source of electricity. However, like any tech-
nological system, solar power generation systems are prone to various faults that
can affect their efficiency and reliability. Understanding and predicting these faults
is critical to optimizing power output and reducing system downtimes.

The major classes of faults in a solar power generation system can be divided
as electrical, environmental, and physical. Open circuits and line faults are some
common types of electrical faults that can disrupt the normal functioning of the
system, thereby incurring losses. These types of faults are generally caused by
damage, deterioration, or aging in the solar modules. Environmental factors, such as
high wind velocities, can lead to structural failures or require preventive maintenance.

In this direction, by using the data coming from the solar power generation equip-
ment, the proposed system will predict faults before they cause severe losses in
power or even damage. The system focuses on the four significant faults: elec-
trical faults (open circuit and line faults), physical faults (related to circuit main-
tenance and module cleaning), and environmental faults (due to structural mainte-
nance caused by wind velocity). After considering the characteristics of temperature,
current, voltage, power, sunlight, and wind velocity, the system under consideration
aims to build a fault detection system that would complement the reliability of solar
power generation systems.

3.2 Working of Proposed System

Figure 1 depicts the flowchart of the process for troubleshooting electrical faults in
solar inverters. The first step of the process is data acquisition from sensor, followed
by preprocessing of the acquired data and its usage in exploring the data along with
feature selection in building the model.

1. If there are no electrical faults, then it goes to check if there is an environmental
fault. If there were no faults in the environment, then it goes to check for physical
faults.
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Acquire Data from
Sensors
I Preprocess Acquired Data I

l

I Data Exploration I

Feature Selection
for Model Building

Environme
ntal Faults

Physical
Faults

Need
Maintenance

Fig. 1 Working flow of proposed system

2. If there are electrical faults, then it goes to check if the inverter is cut off. If it
is cut off, then line is checked whether it is broken or not. If the line is broken,
then cable is replaced.

3. 1If the line is not broken, replace the inverter.

4. If environmental faults are present, the inverter is checked for overheating. The
inverter is then allowed to cool off.

5. If the inverter is not hot, heat sources in the environmental area are checked.
After eliminating the sources of heat, the inverter is replaced.

6. If some physical faults are detected, then tests are catried out to determine if the
inverter has signs of being physically damaged.

7. If there is existence of physical damage, then it calls for the replacement of the
inverter. That is, in the absence of signs of physical damage, then the inverter is
tested for connections. In this regard, if there exists signs of loose connections
then connections are tightened.

8. Incase there are no signs of loose connections, then it will call for the replacement

of the inverter.



Comparative Study of Machine Learning for Fault Prediction in Solar ... 253

4 Methodology

The proposed fault prediction system for solar power generation uses machine
learning algorithms to classifying and predicting electrical, physical, and environ-
mental types of faults based on the input features collected from solar equipment. It
predicts three major faults: electrical faults like open circuit and line faults; physical
faults concerning the degradation or cleaning of modules; and environmental faults
influenced by factors of wind velocity.

4.1 Collection of Data

This system collects data from attached sensors in the solar power generation equip-
ment on the parameters that include temperature, current, voltage, output power, wind
velocity, and intensity of sunlight. All these help in identifying the typical patterns
that indicate various faults.

1. Temperature: Higher temperatures can affect solar panel performance and the
efficiency of the system.

2. Current: Abnormalities in current flow can signal electrical issues such as open
circuit or line-line faults.

3. Voltage: Voltage fluctuations are often indicative of faults in the solar panels or
wiring.

4. Sunlight Intensity: Variations in sunlight affect the power output and may signal
the need for cleaning or maintenance of the solar panels.

5. Wind Velocity: High wind velocity can lead to physical damage or structural
issues, making it a crucial environmental factor to monitor.

These parameters provide valuable input data that reflect the operational health
of the solar water pump system and are essential for detecting electrical, physical,
and environmental faults.

4.2 Preprocessing Data

The data collected by sensors before its processing is done to ensure quality and reli-
ability in the same. In this step, data is cleaned addressing missing values, normaliza-
tion to ensure that the same scale is maintained for features and the data is separated
for training and test sets. Because there are three different targets to be predicted, it’s
important to decide which feature is the relevant feature for a target of interest. Feature
selection is also done to identify the most pertinent variables for the prediction of
each type of fault. 3. In this study, several machine learning algorithms are trained for
the fault prediction model. These include logistic regression, support vector machine
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(SVM), k nearest neighbors (KNN), decision tree and random forest. Each model is
chosen based on the ability of the given algorithm to handle varied data distributions
or relationships between input features and output classes.

Before feeding the data into machine learning models, it must undergo prepro-
cessing to ensure its quality and relevance. Key preprocessing steps include

1. Handling Missing Values: Sensor data can often be incomplete, with missing
readings or irregularities. Techniques such as imputation (using the mean,
median, or other statistical methods) are employed to fill in these gaps, ensuring
no important information is lost.

2. Normalization: Since the different features (e.g., current, voltage, temperature)
have varying scales, normalization is applied to bring them to a common scale.
This step ensures that one feature does not disproportionately influence the
model’s predictions.

3. Feature Selection: Not all features may be relevant for every type of fault.
For instance, electrical faults might rely more heavily on current and voltage,
while environmental faults depend on wind velocity. Feature selection helps
focus on the most important variables for each fault category, improving model
performance and reducing noise in the data.

4. Splitting the Dataset: The dataset is partitioned into training and testing subsets,
commonly in an 80:20 ratio. The training set instructs the model, whereas the
test set assesses its performance on unfamiliar data.

4.3 Training the Models

Feeding the processed data into each of machine learning algorithms trains the models
on respective relationships between input features and fault categories. To optimize
the hyperparameters for the cross-validation of the models, overfitting is prevented,
and the models will generalize well to new, unseen data. In training, all models
are evaluated based on accuracy in the performance metrics on a training set and,
therefore, aim at minimizing the errors of prediction.

4.4 Testing of the Models on Test Set

The performance of models is checked on test set after training. This is required to
determine how accurately faults are predicted by the models. In this discussion, the
accuracy of the models is used as the primary measure to compare the performances
of various models developed above three prediction targets: electrical faults, physical
faults, and environmental faults. The accuracy of the models for each of these targets
decides what algorithm can perform best for that fault category.
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Process

Details

Training process

Data preparation

* Preprocess fault data: normalize features handle missing values, encode
categorical variables
* Split dataset into training and test sets (e.g., 80/20 or 70/30)

Model training

Logistic
regression

* Fit the model to find
the best-fit line
minimizing logistic
loss

A statistical model
employing a logistic
function to represent
binary dependent
variables. It assesses
the likelihood of an
event transpiring

Simplicity: Easy
implement and interpret
Efficiency: Works well
with large datasets
Linear Relationships:
Suitable for cases where
the relationship between
the dependent and
independent variables is
approximately linear

Support vector

* Identify the ideal

High Dimensionality:

machine (SVM) hyperplane that Effective in
optimizes the margin. high-dimensional spaces
* A supervised learning | ¢ Flexibility: Can use
model that identifies various kernel functions
the optimal to represent non-linear
hyperplane for relationships
distinguishing various | * Robustness: Works well
classes inside the with both linear and
feature space non-linear data
distributions
K nearest * Store training * Intuitive: Easy to
neighbors (KNN) | instances without a understand and

traditional training
phase

* A non-parametric
algorithm that
classifies data points
based on the classes
of their nearest
neighbors in the
feature space

implement

Non-Linear
Relationships: Effective
for data that does not fit a
linear model
Adaptability: Can adapt
to the distribution of the
data without requiring a
parametric form

(continued)
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Process

Details

Decision tree

* Iteratively partition
data according to
feature values to
reduce impurity
measurements

A hierarchical model
that determines
outcomes through a
sequence of
feature-oriented
inquiries. It partitions
the data into subsets
according to feature
values.

« Interpretability: Easy to
visualize and interpret

* Non-Linearity: Handles
non-linear relationships
well

* Feature Importance:
Provides insights into
which features are most
important for predictions

Random forest

Construct multiple
trees using
bootstrapped
samples; aggregate
predictions

An ensemble learning
technique that
integrates numerous
decision trees to
enhance predictive
accuracy and mitigate
overfitting.

* Robustness: Reduces the

risk of overfitting

compared to single

decision trees

Handling Complexity:

Effectively captures

complex interactions

between features

* Versatility: Applicable
for both classification and
regression tasks

Cross-validation

efficacy

folds

Use k-fold cross-validation to minimize overfitting and validate model

Divide dataset into k subsets; train and validate k times using different

Hyperparameter
optimization

validation

identify optimal hyperparameter values.

Combine cross-validation with hyperparameter tuning for robust

Employ methodologies such as Grid Search or Random Search to

Testing process

Evaluation of

Test each model on test set (unseen data) to assess predictive

performance performance

* Make predictions and compare them to actual outcomes
Accuracy  Calculate accuracy as
calculation True Positives+True Negatives

Accur: acy = Total Instances

» High accuracy indicates good performance in identifying faults.
Consider other metrics (precision, recall) for comprehensive evaluation.
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4.5 Fault Prediction

Once the best model is found for each type of fault, which can predict whether a fault
is likely going to happen in the system, the final model is deployed to make real time
predictions based on live sensor data from the solar power generation system. The
model predicts whether a fault is likely to occur, allowing for proactive maintenance
and system optimization.

5 Results and Discussion

The machine learning models used for predicting faults in solar power generation
systems demonstrate varying levels of accuracy across different fault types.
Tables 1, 2, and 3 show accuracy for each model.

Table 1 Accuracy for target 1

Algorithm Accuracy F1_score
Logistic regression 95.2 80.32
SVM 93.6 7747
KNN 80.1 45.69
Decision tree 922 76.33
Random forest 94.2 79.2

Table 2 Accuracy for target 2

Algorithm Accuracy F1_SCore
Logistic regression 96.2 81.1

SVM 91.6 75.5
KNN 82.4 47.22
Decision tree 93.5 77.23
Random forest 94.2 79.3

Table 3 Accuracy for target 3

Algorithm Accuracy F1_score
Logistic regression 95.9 80.85
SVM 92.6 76.33
KNN 88.4 60.3
Decision tree 94.5 79.8
Random forest 95.5 80.2
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For Target 1, which focuses on electrical faults like open circuit and line-line
faults,

1. Logistic Regression achieves the highest accuracy at 95.2% and F1 Score is
80.32%. This indicates that the relationship between features such as temperature,
current, voltage, and power is largely linear, making logistic regression an ideal
fit.

2. Random Forest, with an accuracy of 94.2% and F1 Score is 77.47%, also
performs well owing to its capacity to manage intricate complex patterns by
aggregating multiple decision trees.

3. SVM follows closely at 93.6% and F1 Score is 45.69%, though it’s slightly lower
performance suggests that it may struggle slightly with the linearity of the data.

4. Decision Tree offers decent accuracy at 92.2% and F1 Score is 76.33%, though
it is prone to overfitting.

5. KNN lags behind with an accuracy of 80.1% and F1 Score is 79.2%, likely due
to its sensitivity to noisy data, making it less suitable for this fault type.

For Target 2, which involves physical faults such as maintenance and cleaning
requirements,

1. Logistic Regression again proves to be the most effective model with an accuracy
of 96.2% and F1 Score is 81.1%, indicating that physical faults are also well
captured by a linear model.

2. Random Forest performs robustly here as well with 94.2% and F1 Score is
75.5%, offering consistency across fault types,

3. Decision Tree improves slightly with an accuracy of 93.5% and F1 Score is
47.22%, likely due to its ability to capture more intricate relationships between
the features.

4. SVM scores slightly lower at 91.6% and F1 Score is 77.23%, reflecting its
sensitivity to non-linearities or noise in the data,

5. KNN improves marginally to 82.4% and F1 Score is 79.3%, though it remains
less effective for physical fault prediction.

For Target 3, which focuses on environmental faults like structural maintenance
due to wind velocity.

1. Logistic Regression continues to perform strongly with an accuracy of 95.9%
and F1 Score is 80.85%, demonstrating that environmental factors also exhibit a
linear relationship with fault occurrences.

2. Random Forest excels with an accuracy of 95.5% and F1 Score is 76.33%,
showcasing its strength in handling more complex decision boundaries in the
data.

3. Decision Tree performs similarly well, with an accuracy of 94.5% and F1 Score
is 60.30%

4. SVM achieves 92.6% and F1 Score is 79.8%, reflecting its effectiveness in
handling some non-linearities present in environmental fault data.,
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Fig. 2 Accuracy for target 1

5. KNN performs better for this target with an accuracy of 88.4% and F1 Score
is 80.20%, likely because environmental data like wind velocity forms clearer
clusters that KNN can more easily capture.

Overall, Logistic Regression and Random Forest are the top performers across
all three fault types, with Logistic Regression benefiting from the largely linear
relationships in the data and Random Forest excelling due to its ability to generalize
across complex patterns while avoiding overfitting. SVM performs well but tends to
lag slightly, particularly in cases of linearity. Decision Tree shows good accuracy but
is more prone to overfitting compared to Random Forest, and KNN, while generally
weaker, performs better when dealing with environmental fault data where clearer
clustering is present (Figs. 2, 3 and 4).

The study shows that logistic regression outperforms other methods in identifying
fault categories, with a maximum accuracy of 95.2% in electrical failures, 96.2% in
physical imperfections, and 95.9% in environmental defects. Random Forest’s accu-
racy of 95.5% is also noteworthy. The study suggests incorporating high-performing
models for real-time application and averting system disruptions.
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Fig. 3 Accuracy for target 2
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6 Conclusion

The integration of Machine learning techniques employed for failure prediction in
solar power systems. Generation system proves to be highly effective for improving
reliability and system performance. Data collected based on the key parameters,
which includes current, voltage, and temperature, sunlight intensity, and wind
velocity, results in an accurate electrical, physical, and environmental faults predic-
tion. Among the accuracy of the tested machine learning algorithms, Logistic Regres-
sion is one that generally tends to high so it performs well across all the faults, indi-
cating the degree to which many of the underlying relationships are linear in nature.
In addition to the capability of capturing complex patterns and handling non-linear
data, Random Forest stands out well for application in real-world applications. The
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proposed system intended for real-time fault prediction for the early detection of
issues that actually minimize downtime, enabling proactive maintenance. This not
only improves efficiency of the entire solar electricity production systems but reduces
costs involved in the operation due to prevention from failures before the situation
escalates.

References

10.

11.

14.

15.

16.

. Ministry of New & Renewable Energy—Government of India. mnre.gov.in. https://mnre.gov.in/
. Solar Energy Corporation of India Limited(SECI) A government of India enterprise, under

ministry of new and renewable energy. www.seci.co.in. https://www.seci.co.in/

. Shejwal YK, Kidav JU, Korra L (2024) Maintenance and performance of solar water pump in

a rural agricultural community: a case study. In: Lecture notes in networks and systems. pp
245-254. https://doi.org/10.1007/978-981-97-3604-1_18

. Stellbogen D (2002) Use of PV circuit simulation for fault detection in PV array fields. https://

doi.org/10.1109/pvsc.1993.346931

. Chandel SS, Nagaraju Naik M, Chandel R (2015) Review of solar photovoltaic water pumping

system technology for irrigation and community drinking water supplies. Renew Sustain
Energy Rev 49:1084-1099. https://doi.org/10.1016/j.rser.2015.04.083

. Hassan YB, Orabi M, Gaafar MA (2023) Failures causes analysis of grid-tie photovoltaic

inverters based on faults signatures analysis (FCA-B-FSA). Sol Energy 262:111831. https://
doi.org/10.1016/j.solener.2023.111831

. Impact of electromagnetic field on the conversion efficiency of solar PV panel. Periodico 91(4).

https://doi.org/10.37896/pd91.4/91412

. Yang X, Sun L, Yuan Y, Zhao X, Cao X (2018) Experimental investigation on performance

comparison of PV/T-PCM system and PV/T system. Renew Energy 119:152-159. https://doi.
org/10.1016/j.renene.2017.11.094

. Ahmad T et al (2021) Artificial intelligence in sustainable energy industry: Status Quo, chal-

lenges and opportunities. J Clean Prod 289(289):125834. https://doi.org/10.1016/j.jclepro.
2021.125834

Lu S, Phung BT, Zhang D (2018) A comprehensive review on DC arc faults and their diagnosis
methods in photovoltaic systems. Renew Sustain Energy Rev 89:88-98. https://doi.org/10.
1016/j.rser.2018.03.010

Zaki SA, Zhu H, Fakih MA, Sayed AR, Yao J (2021) Deep-learning—based method for faults
classification of PV system. IET Renew Power Gener 15(1):193-205. https://doi.org/10.1049/
pg2.12016

. Waqgar Akram M, Li G, Jin Y, Chen X (2022) failures of photovoltaic modules and their

detection: a review. Appl Energy 313:118822. https://doi.org/10.1016/j.apenergy.2022.118822

. Kuo CL, Chen J-L, Chen S-J, Kao C-C, Yau H-T, Lin C-H (2017) Photovoltaic energy conver-

sion system fault detection using fractional-order color relation classifier in microdistribution
systems. IEEE Trans Smart Grid 8(3):1163—-1172. https://doi.org/10.1109/tsg.2015.2478855
Sayyah A, Horenstein MN, Mazumder MK (2014) Energy yield loss caused by dust deposi-
tion on photovoltaic panels. Sol Energy 107:576-604. https://doi.org/10.1016/j.solener.2014.
05.030

Feng Y, Hao W, Li H, Cui N, Gong D, Gao L (2020) Machine learning models to quan-
tify and map daily global solar radiation and photovoltaic power. Renew Sustain Energy Rev
118:109393. https://doi.org/10.1016/j.rser.2019.109393

Haque A, Bharath KVS, Khan MA, Khan I, Jaffery ZA (2019) Fault diagnosis of photovoltaic
modules. Energy Sci Eng. https://doi.org/10.1002/ese3.255


https://mnre.gov.in/
http://www.seci.co.in
https://www.seci.co.in/
https://doi.org/10.1007/978-981-97-3604-1_18
https://doi.org/10.1109/pvsc.1993.346931
https://doi.org/10.1109/pvsc.1993.346931
https://doi.org/10.1016/j.rser.2015.04.083
https://doi.org/10.1016/j.solener.2023.111831
https://doi.org/10.1016/j.solener.2023.111831
https://doi.org/10.37896/pd91.4/91412
https://doi.org/10.1016/j.renene.2017.11.094
https://doi.org/10.1016/j.renene.2017.11.094
https://doi.org/10.1016/j.jclepro.2021.125834
https://doi.org/10.1016/j.jclepro.2021.125834
https://doi.org/10.1016/j.rser.2018.03.010
https://doi.org/10.1016/j.rser.2018.03.010
https://doi.org/10.1049/rpg2.12016
https://doi.org/10.1049/rpg2.12016
https://doi.org/10.1016/j.apenergy.2022.118822
https://doi.org/10.1109/tsg.2015.2478855
https://doi.org/10.1016/j.solener.2014.05.030
https://doi.org/10.1016/j.solener.2014.05.030
https://doi.org/10.1016/j.rser.2019.109393
https://doi.org/10.1002/ese3.255

262

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Y. K. Shejwal et al.

Zhao Y, Li T, Zhang X, Zhang C (2019) Artificial intelligence-based fault detection and diag-
nosis methods for building energy systems: advantages, challenges and the future. Renew
Sustain Energy Rev 109:85-101. https://doi.org/10.1016/j.rser.2019.04.021

Blumer LS (2020) Solar panel electricity, efficiency, and environmental impacts. Adv Biol Lab
Educ. https://doi.org/10.37590/able.v41.art4

Popovici CG, Hudisteanu SV, Mateescu TD, Chereches N-C (2016) Efficiency improvement
of photovoltaic panels by using air cooled heat sinks. Energy Procedia 85:425-432. https://doi.
org/10.1016/j.egypro.2015.12.223

Flicker J, Johnson J (2016) Photovoltaic ground fault detection recommendations for array
safety and operation. Sol Energy 140:34-50. https://doi.org/10.1016/j.solener.2016.10.017
Hsu J-Y, Wang Y-F, Lin K-C, Chen M-Y, Hsu JH-Y (2020) Wind turbine fault diagnosis and
predictive maintenance through statistical process control and machine learning. IEEE Access
8:23427-23439. https://doi.org/10.1109/access.2020.2968615

Bernardes J, et al (2022) Hydropower operation optimization using machine learning: a
systematic review. Al 3(1):78-99. https://doi.org/10.3390/ai3010006

Khurana D, Dhingra S (2019) A comparative evaluation on different types of recommender
systems. J Adv Res Dynam Control Syst 11(11):97-105. https://doi.org/10.5373/jardcs/v11
i11/20193173

Ahmad MW, Reynolds J, Rezgui Y (2018) Predictive modelling for solar thermal energy
systems: a comparison of support vector regression, random forest, extra trees and regression
trees. J Clean Prod 203:810-821. https://doi.org/10.1016/].jclepro.2018.08.207

IoT and neural network-based water pumping control system for smart irrigation. Inform Sci
Lett 9(2):107-112. https://doi.org/10.18576/is1/090207

Al-Karaghouli A, Kazmerski LL (2013) Energy consumption and water production cost of
conventional and renewable-energy-powered desalination processes. Renew Sustain Energy
Rev 24:343-356. https://doi.org/10.1016/j.rser.2012.12.064

Bhave AG (1994) Potential for solar water-pumping systems in India. Appl Energy 48(3):197—
200. https://doi.org/10.1016/0306-2619(94)90008-6


https://doi.org/10.1016/j.rser.2019.04.021
https://doi.org/10.37590/able.v41.art4
https://doi.org/10.1016/j.egypro.2015.12.223
https://doi.org/10.1016/j.egypro.2015.12.223
https://doi.org/10.1016/j.solener.2016.10.017
https://doi.org/10.1109/access.2020.2968615
https://doi.org/10.3390/ai3010006
https://doi.org/10.5373/jardcs/v11i11/20193173
https://doi.org/10.5373/jardcs/v11i11/20193173
https://doi.org/10.1016/j.jclepro.2018.08.207
https://doi.org/10.18576/isl/090207
https://doi.org/10.1016/j.rser.2012.12.064
https://doi.org/10.1016/0306-2619(94)90008-6

	 Comparative Study of Machine Learning for Fault Prediction in Solar Water Pumps
	1 Introduction
	1.1 Introduction
	1.2 Problem Statement
	1.3 Objective
	1.4 Scope

	2 Literature Review
	2.1 Defect Identification and Prediction in Solar Systems
	2.2 Utilization of Machine Learning in Predictive Maintenance for Renewable Energy Technologies
	2.3 Existing Studies on Solar Water Pumps and Related Technologies

	3 System Overview
	3.1 Introduction
	3.2 Working of Proposed System

	4 Methodology
	4.1 Collection of Data
	4.2 Preprocessing Data
	4.3 Training the Models
	4.4 Testing of the Models on Test Set
	4.5 Fault Prediction

	5 Results and Discussion
	6 Conclusion
	References


