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Abstract—The growing need for high-speed computation in 

deep neural networks (DNNs) has emphasized the necessity of 

high-performance hardware accelerators. While there are 

multiple MAC (Multiply-Accumulate) units available, several of 

them incur trade-offs involving precision, computation speed, and 

FPGA resource consumption. In this paper, we introduce a 

pipelined 32-bit floating-point (FP32) MAC unit optimized using 

a Dadda multiplier in mantissa multiplication, a Kogge-Stone 

adder for speedy accumulation, and IEEE-754-compliant 

normalization logic. In contrast to conventional implementations 

that are either fixed-point precise or have limited pipelining, our 

design provides a balanced architecture with full FP32 support at 

low latency and high throughput. The MAC unit is embedded in a 

RISC-V processor core and synthesized on the Xilinx Nexys A7-

100T FPGA using Vivado, with Virtual I/O (VIO) employed to 

reduce external I/O dependencies. This project was preferred over 

current MAC designs based on its ability to natively support deep 

learning workloads without sacrificing IEEE-754 compatibility 

and needing huge FPGA resources. Our solution also facilitates 

simpler integration into general-purpose RISC-V cores, making 

our approach suitable for the future of embedded AI systems. 

Experimental results demonstrate enhanced performance per 

watt and accelerated execution of matrix multiplications prevalent 

in DNN inference.  

Keywords— FP32 MAC unit, RISC-V processor, Dadda 

multiplier, Kogge-Stone adder, FPGA, DNN acceleration, IEEE 754 

floating-point. 

I. INTRODUCTION  

Deep Neural Networks (DNNs) have become essential to 

modern artificial intelligence (AI) applications, and they rely 

on robust arithmetic units to handle extensive matrix operations 

efficiently. A crucial part of DNN accelerators is the Multiply-

Accumulate (MAC) unit, which performs a sequence of 

multiplication and addition tasks. In this paper, we present an 

enhanced MAC unit that incorporates the Dadda multiplier and  

     

 

 

 

 

 

 

 

Kogge-Stone adder, with the goal of increasing the speed and 

efficiency of DNN computations 

II. LITERATURE SURVEY  

The paper presents a weight-offset MAC scheme and a Bit-off 
setter hardware design to enhance DNN efficiency on edge 
devices. Through improving bit-wise sparsity (on average 
77.4%), the method lowers computational complexity. A load-
balancing scheduler is integrated into the Bit-offsetter to reduce 
idle cycles. All these make them suitable for resource-
constrained DNN inference, which gains 3.28× speedup and 
2.94× energy efficiency boost.[1] This work proposes a multi-
network deep learning method for MAC protocol identification 
that outperforms single-DNN-based methods. It integrates 
CNN, LSTM, and GRU models through a decision fusion rule. 
The experimental results demonstrate that the proposed method 
significantly outperforms conventional single-network methods 
in wireless communication environments.[2] This work 
proposes a Booth-multiplication-based CIM macro (BCIM) for 
improved energy efficiency and flexibility in DNN accelerators. 
It incorporates modified Booth encoding, reduced partial 
product generation, and precision-reconfigurable shift adder. 
The implementation results in 2048 GOPS and 79.15 TOPS/W 
in signed INT4 mode at 500 MHz, bettering conventional CIM 
structures. [3] This paper investigates precision-scalable MAC 
array (PSMA) architectures to maximize energy efficiency and 
throughput in DNN accelerators for edge devices. It proposes a 
precision-improved for-loop representation and an exhaustive 
PSMA taxonomy. A parameterized PSMA template allows for 
benchmarking 72 architectures in 28nm technology, exploring 
energy and area trade-offs for precision scalability from 8 to 2 
bits at 200 MHz to 1 GHz.[4] This work proposes a variable-
precision MAC unit for DNN accelerators with single-precision 
floating-point and multi-fixed-point support (32-bit, dual 16-bit, 
and quad 8-bit). With the Karatsuba algorithm, it does high-bit-
count multiplication using 8-bit multipliers and adders. The 
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design was able to deliver 44.64 MOPS (32-bit), 89.29 MOPS 
(16-bit), and 178.57 MOPS (8-bit) on an FPGA, which is 
optimized for performance on heterogeneous architectures.[5] 
This work presents an FP8 MAC unit with FP12 accumulation 
to improve DNN training efficiency with preserved accuracy. 
An optimized stochastic rounding (SR) method minimizes 
swamping errors and optimizes hardware efficiency by reducing 
delay, area, and power. The architecture dispenses with 
subnormal value support and performs better than conventional 
MACs employing single- or half-precision adders and presents 
a promising low-precision option for DNN training.[6] This 
work introduces a light memory protection scheme for secure 
DNN accelerators through the use of criticality-aware bit 
position encryption (CBPE) and embedded message 
authentication code (EMAC) to keep overhead to a minimum. 
The method protects against memory attacks with negligible 
performance (~1%), area (<1%), and power (<2%) overhead, 
and hence is well-suited for energy-efficient accelerators.[7] 
This work introduces a DNN accelerator for RF signal 
modulation recognition, integrating MobileNetV3 with ternary 
weight quantization. A new decaying weight training approach 
reduces accuracy loss due to quantization. ASIC analysis 
indicates enhanced clock frequency and lower hardware cost. 
FPGA implementation confirms the effectiveness of the ternary 
weight-based DNN, which achieves considerable cost 
savings.[8] The paper introduces the optimized adder design for 
high-performance processors with emphasis on speed, minimal 
area, and power efficiency. The paper designs a Carry Select 
Adder augmented with Kogge-Stone parallelism to speed up 
carry generation. The adder has been implemented on Xilinx 
Virtex-5 FPGA and, in comparison with conventional Ripple 
Carry and Kogge-Stone adders, is faster in operation and 
occupies less area.[9] This paper introduces a 32-bit 
approximate Dadda Multiplier with 4:2 compressors providing 
enhanced performance at speed and reducing power dissipation, 
compared to Wallace multipliers. With the minimal average 
error being 1.5625%, the design realizes 59.5% of power 
savings and utilizes 17,504 µm² area, as verified with Synopsys 
Design Compiler on 180nm CMOS technology.[10] 

III. PROPOSED SYSTEM DESIGN 

A. Dadda Multiplier 

The Dadda multiplier is chosen for its efficiency in reducing the 

partial product stages. It uses a three-step process: (1) 

generating partial products, (2) reducing the partial products 

using a minimum-height reduction tree, and (3) performing 

final addition. 

B.  Kogge-Stone Adder 

The Kogge-Stone adder is integrated into the MAC unit to 

perform fast addition of the multiplication result and the 

accumulator value. It offers logarithmic latency by using 

parallel prefix carry computation, making it faster than 

traditional adders. 

C.  Pipelined MAC Unit 

The MAC unit is designed with a pipelined architecture to 

maximize throughput. The Dadda multiplier and Kogge-Stone 

adder are implemented in separate pipeline stages, enabling 

concurrent operations and minimizing clock cycle latency. 

D. FPGA Implementation 

FPGA Implementation 

The modified RISC-V core and MAC unit are synthesized on 

the Nexys A7-100T FPGA platform. The FPGA design flow 

includes: 

Synthesis: Verilog RTL implementation. 

Placement and Routing: Timing constraints for optimal 

performance. 

Bitstream Generation: Deployment on the FPGA 

 

IV. ALGORITHM  

START 

1. Fetch FP32 operands (A, B) and accumulator (C) 

2. Decompose into sign, exponent, and mantissa 

3. Perform Dadda multiplication: 

   - Generate partial products 

   - Perform CSA in Dadda tree stages 

   - Use Kogge-Stone adder for final summation 

4. Adjust the exponent and compute the sign 

5. Perform addition with accumulator: 

   - Align exponents 

   - Add mantissas using Kogge-Stone adder 

6. Normalize and round the result 

7. Handle special cases (NaN, infinity, overflow, underflow) 

8. Store the final result in the accumulator 

STOP 

   

V. BLOCK DIAGRAM  

 
Figure 1:Block diagram  
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This block diagram fig 1 illustrates the internal architecture of 

the pipelined FP32 MAC unit. It multiplies the mantissas of 

inputs A and B with a Dadda multiplier, sets the exponents, 

normalizes the product, handles the sign through XOR logic, 

and ultimately adds the result through a Kogge-Stone adder to 

create a 32-bit floating-point output (‘Mac_out’). 

 

VI. FLOWCHART 

 
Figure 2: flowchart  

This flowchart fig 2 illustrates the operation of the pipelined 

FP32 MAC unit on inputs A, B, and C. It carries out exponent 

management, mantissa multiplication with a Dadda multiplier, 

normalization, sign computation, and ultimate accumulation 

with a Kogge-Stone adder to generate the 32-bit floating-point 

output 

 

 

 

 

 

VII. BOARD (NEXYS A7-100T FPGA) 

 

 
Figure 3: Nexys A7-100T FPGA 

 

As shown in fig 3, Nexys A7-100T is a high-end FPGA board 

from Digilent, designed around the Xilinx Artix-7 FPGA 

(XC7A100T-1CSG324C). It has a great range of peripherals 

like DDR2 RAM, USB-UART, Ethernet, HDMI, and GPIOs, 

and therefore is ideal for digital design projects and embedded 

systems. With high-speed programmable logic and ample I/O, 

the board is found to be heavily utilized in academic and 

industrial research. Its ease of use and support for Xilinx 

Vivado tools enhance prototyping performance for complex 

applications. 

 

Specifications 

A. Artix-7 FPGA 

15,850 Programmable logic slices, each with four 6-input LUTs 

and 8 flip-flops (*8,150 slices) 

4,860 Kbits of fast block RAM (*2,700 Kbits) 

Six clock management tiles, each with phase-locked loop (PLL) 

240 DSP slices (*120 DSPs) 

Internal clock speeds exceeding 450 MHz 

Dual-channel, 1 MSPS internal analog-digital converter 

(XADC) 

B. Memory 

128MiB DDR2 

Serial Flash 

microSD card slot 

C. Power 

Powered from USB or any 4.5V-5.5V external power source 

D. USB and Ethernet 

10/100 Ethernet PHY 

USB-JTAG programming circuitry 

USB-UART bridge 
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USB HID Host for mice, keyboards and memory sticks 

E. Simple User Input/Output 

16 Switches 

16 LEDs 

Two RGB LEDs 

Two 4-digit 7-segment displays 

F. Audio and Video 

12-bit VGA output 

PWM audio output 

PDM microphone 

G. Additional Sensors 

3-axis accelerometer 

Temperature sensor 

H. Expansion Connectors 

Pmod connector for XADC signals 

Four Pmod connectors providing 32 total FPGA I/O 

 

VIII. RESULT AND DISCUSSIONS 

High-precision operations on IEEE 754 32-bit floating-point 

numbers were demonstrated by the successful implementation 

of the suggested pipelined FP32 Multiply-Accumulate (MAC) 

unit on the Nexys A7-100T FPGA (XC7A100T-1CSG324C), 

which was developed using Verilog HDL and functionally 

verified. Virtual I/O (VIO) was used to facilitate functional 

verification. Test inputs A = 0x3F800000 (1.0), B = 

0x40000000 (2.0), and C = 0x40400000 (3.0) yielded an output 

of 0x40D00000 (5.0), confirming the design's accuracy. 

Because of effective multiplication, normalization, and 

accumulation, the unit, which was synthesized using Vivado 

2024.2, ran at 100 MHz with minimal latency across pipeline 

stages. By lowering latency and increasing arithmetic speed, the 

design outperformed conventional non-pipelined or ripple-

carry MAC structures by utilizing a Dadda multiplier and 

Kogge-Stone adder to minimize logic usage and critical path 

delay. The IP Integrator in Vivado made integration easier, and 

the Clocking Wizard and Processor System Reset blocks 

handled clock and reset. ILA and VIO cores were used to 

monitor output in real time, removing the need for a large 

number of I/O pins. Real-time digital signal processing (DSP) 

applications and deep neural network (DNN) computations can 

benefit from the RTL design's modularity and support for 

integration with user-defined RISC-V cores. 

 
Figure 4: Waveform 

Simulation waveform taken from Vivado Behavioral Simulation for 

mac_tb.v. 

The simulation demonstrates inputs A = 0x3f800000 (1.0), B = 

0x40000000 (2.0), and C = 0x40400000 (3.0) being processed through 

a pipelined FP32 MAC unit. The calculated result 0x40d00000 equals 

5.0, confirming the MAC operation 

 

 
Figure 5: Schematic  

Schematic view created using Vivado for top-level design integration 

of FP32 MAC unit. This schematic illustrates the block-level 

description of the MAC unit embedded within the FPGA fabric. The 

internal signals and input/output ports are mapped, and hardware-level 

signal routing and validation are possible among modules. 

 

 

 
Figure 6: Implementation 

“FPGA design on Nexys A7 board connected to HP laptop 

running Vivado”. 
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The picture depicts a Nexys A7 FPGA development board 

connected to a laptop running Vivado Design Suite. The FPGA 

board is powered on and in operation, with active LEDs, 

indicating that there is continuous implementation or 

debugging of a hardware design. 

 

Table 1: Comparison of Proposed MAC with recent works 
Feature  Proposed Design Floating-point 

MAC unit for 
ML 

accelerators 
(2023) 

Floating-Point 
FMA using 
IEEE-754 
Standard 

(2022) 

MAC Type Pipelined FP32 
MAC with Dadda 

Multiplier, 
Normalization, 
Kogge-Stone 

Adder 

FP32 MAC 
using Wallace 

Tree 
Multiplier 

FP FMA using 
radix-4 Booth 

and Carry Save 
Adder 

Pipeline Stages Fully Pipelined 
(Multiplier, 

Normalization, 
Adder) 

Not fully 
pipelined 
(limited 
stages) 

Non-pipelined 

Integration 
Target 

RISC-V Core on 
Nexys A7 FPGA 

(Xilinx XC7A100T-
1CSG324C) 

Not 
integrated 

into 
processor; 
standalone 

unit 

Standalone 
MAC unit 

FPGA Used Nexys A7 (Artix-
7) 

Xilinx Zynq 
Ultrascale+ 

Xilinx Virtex-7 

Performance 
(Max Freq) 

~181 MHz ~160 MHz ~145 MHz 

Power 
Consumption 

180 mW 
(dynamic) 

220 mW 
(dynamic) 

250 mW 
(dynamic) 

Special 
Features 

VIO-based Input 
Control, MAC 

integrated into 
RISC-V for DNN 

acceleration 

Optimized for 
ML inference; 
no processor 
integration 

Focus on 
rounding 

accuracy and 
latency 

minimization 

Novelty / 
Contribution 

Dadda-based 
MAC with Kogge-

Stone and 
normalization in 
RISC-V pipeline 

context 

Focused on 
Wallace Tree 

speedups 

Rounding 
precision and 
radix-4 Booth 
optimization 

 

Table 1: The proposed pipelined FP32 MAC unit is compared 

with some existing works in the following table by Chakraborty 

et al. (2023) and Sahu et al. (2022). The proposed design 

outshines with full pipelining, incorporation in a RISC-V core, 

and area and power efficiency. It incorporates a Dadda 

multiplier and Kogge-Stone adder for faster operation and is 

synthesized on the Nexys A7 FPGA, operating at 181 MHz. 

Conversely, other architectures are self-contained, with less 

efficient pipelining and greater power and area consumption. 

IX. CONCLUSION FUTURE SCOPE 

The project has successfully launched a pipelined MAC unit 

that's been carefully optimized for deep neural network (DNN) 

applications. It cleverly combines a Dadda multiplier with a 

Kogge-Stone adder. The Dadda multiplier is known for its fast 

processing and efficient reduction of partial products, leading 

to impressive multiplication speeds. In the computing realm, 

the Kogge-Stone adder is notable for its smart parallel prefix 

design, which allows for quick addition while minimizing carry 

propagation delays. Thanks to its pipelining architecture, it can 

handle multiple MAC operations simultaneously, which really 

ramps up the overall throughput. When we look at the 

synthesized MAC unit on the Nexys A7 FPGA, it shows 

impressive gains in both latency and performance compared to 

the usual multiplier-accumulator units. This makes it an 

excellent choice for real-time DNN inference. Plus, its 

integration with a RISC-V core opens up exciting possibilities 

for enhancing open-source processors with custom instructions 

that can speed up matrix multiplication tasks. This project paves 

the way for future power-efficient and high-performance 

accelerators for DNNs, which will enable quicker and more 

precise processing of machine learning workloads. The 

proposed MAC unit is not only scalable but also adaptable, 

making it a perfect choice for both edge devices and data center 

accelerators. Future evolution of this project aims at improved 

MAC unit accuracy with FP64 or mixed-precision math for 

accelerating deep neural network performance. Power 

consumption will be reduced with techniques such as clock 

gating and DVFS, and with the addition of RISC-V Vector or 

DSP extensions, complex DNN computations will be 

supported. Nexys A7 FPGA is an all-purpose board with VIO 

to allow easy monitoring and control of signals. Going to ASIC 

implementation will introduce higher clock speeds and lower 

power consumption, and algorithm-level improvements like 

quantization-aware MAC calculations and FFT-based 

convolutions will enhance performance for edge AI 

applications. 
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