DATA STRUCTURE THROUGH 'C++'

Contents	cture No.
Analysis of Algorithm Introduction to Algorithm Design and Data Structures	1
Design and analysis of algorithm	2
Algorithm definition, comparison of algorithms.	3
Top down and bottom up approaches to Algorithm design. Analysis of Algorithm	4
Frequency count, Complexity measures in terms of time and space.	5
Structured approach to programming.	6
Basics of C++, Elementary Data Structures : Arrays, linked lists Basics of	7
C++	_
Structure of a program: Variables. Data Types. Constants Operators, Basic	9
Input/Output	
Control Structure, Functions, Compound Data Types: Arrays, Pointers, Dynamic Memory	10
Object Oriented Programming :Classes,	11
Encapsulation, Abstraction, inheritance, Polymorphism	11
Representation of arrays: single and	12
multidimensional arrays. Address calculation using column and row major	12
ordering.	
Various operations on Arrays, Vectors.	13
Application of arrays: Matrix multiplication, Sparse polynomial	14
representation and addition,	
Stacks and Queues: Representation of stacks and queues	15
using arrays and linked-list.	
Circular queues, Priority Queue and D-Queue.	16
Applications of stacks: Conversion from infix to postfix and prefix expressions,	17
Evaluation of postfix expression using stacks	18
Pointers: Definition, Pointer Arithmetic, Array of pointers, Arrays in	19
terms of pointers.	
Linked list: Singly linked list; operations on list, Linked stacks and	20
queues.	
Polynomial representation and manipulation using linked lists.	21
Circular linked lists, Doubly linked lists. Generalized list structure.	22
Sparse Matrix representation using generalized list structure, stacks, queues.	23
Abstract Data types Stacks and Queues Definition of ADT, Stack ADT (array	24
implementation), FIFO queue ADT (array implementation)	
Trees Binary tree traversal methods: Preorder, In-order, Post-ordered traversal.	25
Recursive Algorithms for above mentioned Traversal methods.	26
Representation of trees and its applications: Binary tree representation of a	27
general tree. Conversion of forest into tree.	
Threaded binary trees. Binary search tree. : Height balanced (AVL) tree, B-trees.	28
Searching, Sorting and Complexity Selection sort, Insertion sort, Bubble sort,	29
Quick sort, merge sort, Heap sort, Radix sort and their complexity,	
Searching: Sequential search, Binary Search, Binary Search Tree,	30

ASVL trees, B trees, Searching, sorting and complexity	31
Indexed search, Hashing Schemes.	32
Sorting: Insertion, selection, bubble, Quick,merge,	33
radix, Shell, Heap sort,	34
comparison of time complexity.	35
Graphs 05 Hrs.	36
Graph representation: Adjacency matrix, Adjacency lists,	
Traversal schemes : Depth first	37
search, Breadth first search.	
Spanning tree : Definition, Minimal spanning tree algorithms	38
Shortest Path algorithms(Prime's and Kruskal 's).	39
Review	40