1st Semester Diploma Engineering Exam., 2016

ENGINEERING MATHEMATICS—I

Paper: ENM-104

Full Marks: 70

Time: 3 hours

The figures in the margin indicate full marks for the questions

FIRST HALF

Answer Question No. 1 and any three from the rest

- 1. Answer any four from the following: 2×4=8
 - (a) If $\tan 25^\circ = a$, then find the value of $\tan 155^\circ$ and $\tan 115^\circ$.
 - (b) If \vec{a} and \vec{b} are two vectors such that $|\vec{a}|=3$, $|\vec{b}|=2$ and $\vec{a}\cdot\vec{b}=6$, then find the angle between \vec{a} and \vec{b} .
 - (c) Find the area of the triangle formed by the points (-2, -2), (2, 2) and $(-2\sqrt{3}, 2\sqrt{3})$.

- (d) Prove that $\tan 70^\circ = 2 \tan 50^\circ + \tan 20^\circ$.
- (e) Find the square root of the complex number 1+i.
- (f) Find the 4th-term in the expansion of $\left(x+\frac{2}{x}\right)^5$.
- 2. (a) Prove that

$$\tan^{-1}\frac{1}{4} + 2\tan^{-1}\frac{1}{5} = \tan^{-1}\frac{32}{43}$$

- (b) Find the coefficient of a^{15} in the expansion of $\left(a^3 + \frac{2}{a^2}\right)^{10}$. 5+4=9
- 3. (a) Solve $2\sin^2\theta + 3\cos\theta = 0$, $0 < \theta < 360^\circ$.
 - (b) Find the sum of all integers between 50 and 500, which are divisible by 7.
- 4. (a) Find the equation of a circle passing through the points (5, 7), (6, 6) and (2, -2). Find its centre and radius.
 - (b) If z = x + iy and |2z+1| = |z-2i|, then prove that $3(x^2 + y^2) + 4(x + y) = 3$. 5+4=9

5. (a) Prove that

$$\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ} = \frac{1}{16}$$

- (b) If the roots of the equation $ax^2 + bx + c = 0$ are in the ratio 3:4, then prove that $49ac = 12b^2$.
- 6. (a) If $\sin \theta = k \sin (\theta + \phi)$, then show that

$$\tan\left(\theta+\phi\right) = \frac{\sin\phi}{\cos\phi - k}$$

(b) Find the lengths of major and minor axes, the coordinates of foci and vertices and the eccentricity of the ellipse, $16x^2 + 25y^2 = 400$.

SECOND HALF

Answer Question No. 7 and any three from the rest

- 7. Answer any four from the following: 2×4=8
 - (a) Find the domain of definition of the function $f(x) = \sqrt{x^2 + x 12}$.
 - (b) Evaluate:

$$Lt_{x\to 0} \frac{1-\cos 4x}{x^2}$$

(c) Find
$$\frac{dy}{dx}$$
, where $y = (\sin x)^{\log x}$.

(d) Find the second-order derivative of the function w.r.t.
$$x$$
, $y = \sin 3x \cos 2x$.

(e) Evaluate:
$$\int x \sin x \, dx$$

(f) Find
$$\frac{dy}{dx}$$
, if
$$y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$$

8. (a) If
$$xy = \sin(x+y)$$
, then prove that
$$\frac{dy}{dx} = \frac{\cos(x+y) - y}{x - \cos(x+y)}$$

(b) Evaluate:
$$\int \frac{x \, dx}{(x^2 + 1)(x^2 + 4)}$$
 4+5=9

(i) Lt
$$e^{\sin x} - 1$$
 $\log(1+3x)$

(ii) Lt
$$_{x\to 0} \frac{2^x - 3^x}{x}$$

(b) Evaluate:

$$\int \frac{dx}{x^2 + 5x + 6}$$
 (3+3)+3=9 (Continued)

10. (a) If
$$y = (\tan^{-1} x)^2$$
, then prove that
$$(1+x^2)^2 y_2 + 2x(1+x^2)y_1 = 2$$

(b) Evaluate:

$$\int \frac{x e^x}{\left(1+x\right)^2} \, dx$$
5+4=9

11. (a) Find the derivative of $\sin^{-1} \frac{2x}{1+x^2}$ with respect to $\tan^{-1} \frac{2x}{1-x^2}$.

(b) Evaluate:

$$\int_0^{\pi/2} \frac{dx}{4 + 5\sin x}$$
 4+5=9

12. (a) Given

$$\phi(x) = \frac{1 - \cos x}{x^2}, \text{ when } x \neq 0$$

$$= \frac{1}{2}, \text{ when } x = 0$$

prove that $\phi(x)$ is continuous at x = 0.

(b) Find
$$\frac{d^2y}{dx^2}$$
, when $x = a(\theta + \sin \theta)$, $y = a(1 - \cos \theta)$ at $\theta = \frac{\pi}{2}$.