NOTE:

Answer question 1 and any FOUR from questions 2 to 7. Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours

1.
a) Evaluate
$$\lim_{x \to 0} \frac{(1 - \cos 2x) \sin 3x}{x^2 \sin 2x}$$
.
b) Show that $A = \begin{bmatrix} 5 & 3 \\ -1 & -2 \end{bmatrix}$ satisfy the equation $x^2 - 3x - 7 = 0$.
c) Find the covariance between x and y
 $\boxed{\frac{x \ 1}{2} \ 2} \ 4 \ 6 \ 8 \ 10}$
d) Evaluate $\int_{2}^{4} \frac{x}{x^2 + 1} dx$.
e) Find the first two terms of the Taylor's series expression of $\sin x$ about $x = \frac{\pi}{2}$.
f) Find the equation of the ellipse whose foci are $(\pm 4, 0)$ and the eccentricity is $\frac{1}{3}$.
g) Two dice are thrown. Find the probability of getting an odd number on the first dice and a multiple of 3 on the other.
2.
a) For what real values of λ and μ , the system of linear equations
 $x + y + z = 6$

$$x + y + z = 0$$

$$x + 2y + 3z = 10$$

$$x + 2y + \lambda z = \mu$$

have (i) no solution (ii) a unique solution (iii) an infinite number of solutions.

b) If x, y, z are all different real numbers and given that

$$\begin{vmatrix} x & x^2 & 1+x^3 \\ y & y^2 & 1+y^3 \\ z & z^2 & 1+z^3 \end{vmatrix} = 0, \text{ then prove that } 1+xyz = 0.$$
(9+9)

3.

a) If
$$y = \log \tan \frac{x}{2} + \sin^{-1}(\cos x)$$
, then find $\frac{dy}{dx}$.

b) A box contains 400 bolts. Out of which probability of a defective bolt is 0.1. Find the mean and standard deviation for the distribution of bolts.

Total Marks: 100

c) Let *X* be a random variable with probability distribution

Find the expected value of $(X - 1)^2$.

4.

a) Find the equation of a circle which passing through the point (2, 4) and the centre at the intersection of the lines x - y = 4 and 2x + 3y = -7.

b) Evaluate the integral
$$\int \frac{dx}{(x+1)^2(x^2+1)}$$
. (8+10)

5.

a) Find the maximum and minimum values of $f(x) = \sin x + \frac{1}{2}\cos 2x$ in $\left[0, \frac{\pi}{2}\right]$.

b) Test the convergence of the series

$$\frac{x}{1} + \frac{1}{2} \cdot \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{x^7}{7} + \dots$$

6.

- a) Show that the equation $y^2 4y 4x 8 = 0$ represents a parabola. Find its vertex, focus and directrix.
- b) Fit a straight line for regression equation of *y* on *x*

Х	0	1	2	3	4	5	6
Y	2	1	3	2	4	3	3

a) If α , β are the roots of $3x^2 - 4x + 1 = 0$, form the equation whose roots are $\frac{\alpha^2}{\beta}, \frac{\beta^2}{\alpha}$.

b) Find the limit when $n \to \infty$ of the series 1 1 1 1 1

$$\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n}$$

(8+10)

(6+6+6)

(9+9)