“In order to design good algorithm, we must first agree the criteria for measuring algorithms. The emphasis in this course will be on design of efficient algorithm, hence we will measure algorithms in terms of the amount of the computational resources that algorithm requires.”

Detailed Syllabus

UNIT I
Introduction
10 Hours
What is an Algorithm?, Fundamentals of Algorithmic Problem Solving, Important Problem Types, Fundamental Data Structures.

Fundamentals of the Analysis of Algorithm Efficiency
Analysis Framework, Asymptotic Notations and Basic Efficiency Classes.

UNIT II
Brute Force and Exhaustive Search
24 Hours
Selection Sort and Bubble Sort, Sequential Search and Brute-Force String Matching, Exhaustive Search, Depth First Search, Breadth First Search.

Divide and Conquer
Mergesort, Quicksort, Binary Search, Binary tree traversals and related properties.

Decrease and Conquer
Insertion Sort, Topological Sorting.

Transform and Conquer
Balanced Search Trees, Heaps and Heapsort.

UNIT III
Dynamic Programming
8 Hours
The Knapsack Problem and Memory Functions, Optimal Binary search tree.

UNIT IV
Greedy Technique
Prim’s Algorithm, Kruskal’s Algorithm.

UNIT V

Limitations of Algorithm Power
Lower-Bound Arguments, Decision Trees, P, NP and NP-Complete Problems.

Coping with the Limitation of Algorithm Power
Backtracking (definition only), Branch-and-Bound : Knapsack Problem, Traveling Salesman Problem

RECOMMENDED BOOKS

Main Book:

Reference Book: