NOTE:

1. Answer question 1 and any FOUR from questions 2 to 7.
2. Parts of the same question should be answered together and in the same sequence.
Time: 3 Hours Total Marks: 100
1.
a) Express the following in the form of
$$A + iB$$

 $\frac{(a+ib)^2}{a-ib} - \frac{(a-ib)^2}{a+ib}$.
b) Find the area enclosed by the curve $y = 4x^2$, $x = 0$, $y = 1$ and $y = 4$.
c) Find the characteristic roots of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{bmatrix}$
d) Solve the differential equation $\frac{dy}{dx} = \frac{y}{x} + ax$.
e) Evaluate $\lim_{x\to 0} \frac{e^x - e^{-x}}{x}$.
f) Test the convergence of the series $x + \frac{x^2}{2t} + \frac{x^3}{3t} + ...$
g) If $x = a \cos t$, $y = a \sin t$, find $\frac{dy}{dx}$.
7.
(7x4)
2.
a) Show that $x = 2$ is one of the root of $\Delta = \begin{vmatrix} x & -6 & 1 \\ 2 & -3x & x - 3 \\ -3 & 2x & x + 2 \end{vmatrix} = 0$.
b) Find the inverse of matrix by Gauss Elimination method $A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix}$.
(9+9)
3.
a) Find all the asymptotes of the curve $x^3 + y^3 - 3axy = 0$.
b) The function $f(x)$ is defined as
 $f(x) = 5x - 4$ when $0 < x \le 1$
 $= 4x^3 - 3x$ when $1 < x < 2$
Discuss its continuity at $x = 1$.

c) Find the domain and range of the function $f(x) = \frac{1}{x^2 - 1}$.

4.
a) Evaluate
$$\int_{0}^{\pi} \frac{x}{a^{2} \cos^{2} x + b^{2} \sin^{2} x} dx$$
.
b) If $\vec{a} = 2i - j + k$ and $\vec{b} = 3i + 4j - k$, find $\vec{a} \cdot \vec{b}$, $\vec{a} \times \vec{b}$.
c) Find the lengths of major and minor axes of the ellipse $x^{2} + 4y^{2} = 16$.
(8+6+4)

- 5.
- a) Find the point of local maxima and minima and corresponding maximum and minimum values of the function $(x-1)(x+2)^2$.
- b) Discuss the convergence of series $\frac{1}{a \cdot 1^2 + b} + \frac{2}{a \cdot 2^2 + b} + \frac{3}{a \cdot 3^2 + b} + \cdots$
- c) Expand $log(1 + e^x)$ using Maclaurin series upto four terms.

(6+6+6)

(6+6+6)

- 6.
- a) Find the eccentricity, centre, foci, directrices and latus rectum of the hyperbola. $9x^2 - 16y^2 + 72x - 32y - 16 = 0$
- b) Solve the second order homogenous differential equation $x^2 \frac{d^2 y}{dx^2} 3x \frac{dy}{dx} + 4y = 2x^2$. (9+9)
- 7.
- a) Find the equation of the plane passing through the intersection of the planes x + y + z = 6and 2x + 3y + 4z + 5 = 0 and the points (1, 1, 1).
- b) Find the coordinates of the point on the curve $y = x^2 + 3x + 4$ the tangent at which passes through the origin.
- c) If a + b + c = 0, find the characteristic roots of the matrix $A = \begin{bmatrix} a & c & b \\ c & b & a \\ b & a & c \end{bmatrix}$.