B0-R4: BASIC MATHEMATICS

NOTE:

1. Answer question 1 and any FOUR from questions 2 to 7.

2. Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours Total Marks: 100

1.

a) Find Re(z) and Im(z) where $z = \left(\frac{i}{3-i}\right)\left(\frac{1}{2+3i}\right)$.

b) If $A = \begin{bmatrix} 2 & 3 \\ 4 & 7 \end{bmatrix}$, then find a matrix B such that $2A + 3B = A^2$.

c) Find $\lim_{x\to 0} \frac{\sqrt{2+3x} - \sqrt{2-5x}}{4x}$.

d) If $x^y = e^{x-y}$, then show that $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^2}$.

e) Find a curve in the xy – plane that passes through the point (0, 3) and whose tangent line at a point (x, y) has slope $\frac{2x}{x^2}$.

f) Show that the series $\left[\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \frac{4}{2^4} + \dots\right]$ is convergent.

g) Show that the vectors (2, -3, 1) and (1, 2, 4) are orthogonal.

(7x4)

2.

a) Find the rank of the matrix $A = \begin{bmatrix} 3 & 0 & 2 & 2 \\ -6 & 42 & 24 & 54 \\ 21 & -21 & 0 & -15 \end{bmatrix}$.

b) Find the eigen values of the matrix $\begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix}$.

c) Using Cramer's rule, find the solution to the following system of linear equations:

$$3x + 3y - z = 11$$

 $2x - y + 2z = 9$
 $4x + 3y + 2z = 25$.

(6+4+8)

3.

a) For what values of the constant k the function

$$f(x) = \begin{bmatrix} \frac{x^2 - 3x - 2}{x - 1}, & x \neq 1 \\ k, & x = 1 \end{bmatrix}$$

is continuous at x = 1? Explain.

- b) Let m and n be positive integers. If $x^m y^n = (x + y)^{m+n}$, then prove that $\frac{dy}{dx} = \frac{y}{x}$.
- c) Locate (if any) the relative maxima and relative minima of the function $f(x)=3x^{5/3}-15x^{2/3},\, x>0.$

(5+5+8)

4.

a) Verify the hypotheses of the Mean Value Theorem on the interval [3, 4] for the function f(x) = x + (1/x)

and find the value of c in [3, 4] which satisfies the conclusion of the theorem.

b) Find the slope of the tangent line to the unit circle

$$x = \cos t$$
, $y = \sin t$, $0 < t < 2\pi$

at the point where $t = \pi/6$.

c) Find an equation of the parabola that is symmetric about the y – axis has its vertex at the origin, and passes through the point (5, 2).

(6+6+6)

5.

- a) Evaluate $\int \frac{sec^2(\sqrt{x})}{\sqrt{x}} dx$.
- b) Find the area of the region enclosed by $x = y^2$ and y = (x 2).
- c) Solve the differential equations $\frac{dy}{dx} y = e^{2x}$.

(6+6+6)

6.

- a) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n! 10^n}{3^n}$.
- b) Consider two lines L_1 and L_2 in 3-dimension whose parametric equations are given as follows:

$$L_1$$
: $x = 1 + 4t$, $y = 5 - 4t$, $z = -1 + 5t$
 L_2 : $x = 2 + 8t$, $y = 4 - 3t$, $z = 5 + t$

where $t \in IR$. Are the two lines parallel? Explain.

c) Find the equation of a plane passing through the points (1, 1, 0), (0, 1, 1), (1, 0, 1).

(6+6+6)

7.

- a) Evaluate $\int \left(\frac{1}{\log x} \frac{1}{(\log x)^2} \right) dx.$
- b) Find a vector \vec{n} which is normal to the vectors $\vec{x} = 4\hat{i} 4\hat{j} + 5\hat{k}$ and $\vec{y} = 8\hat{i} 3\hat{j} + \hat{k}$.
- c) Find the first four terms of the Maclaurin's series at a=0 for $f(x) = \frac{1}{1-x}$.

(6+6+6)