NOTE:

Answer question 1 and any FOUR from questions 2 to 7.
Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours

Total Marks: 100

- 1.
- a) Prove that $(1+00^*1) + (1+00^*1)(0+10^*1)^*(0+10^*1) = 0^*1(0+10^*1)^*$.
- b) What is a symbol table? Why is it necessary?
- c) Define a Turing Machine.
- d) Construct a CFG for generating signed floating point numbers.
- e) What is a handle? Explain with an example.
- f) What are activation records? Discuss their structure.
- g) Convert the following Regular Expression into a Finite Automaton: $(1^{*}(00)^{*}1 + 01^{*}0)^{*}$.

(7x4)

2.

- a) Construct a grammar G that will generate all palindromes over {a,b}.
- b) Write an algorithm for removing Left Recursion. Remove Left Recursion from the following grammar:

c) What is peephole optimization? Explain its usage with examples.

(6+7+5)

3.

- a) Write an algorithm for computing CLOSURE of LR(0) items. Hence compute the closure for the following augmented grammar:
 - E' -> E
 - $\mathsf{E} \mathrel{\operatorname{\mathsf{->}}} \mathsf{E} {\operatorname{\mathsf{+}}} \mathsf{T} \mid \mathsf{T}$
 - T -> T*F | F
 - F -> (E) | id
- b) Find a grammar in Chomsky normal form equivalent to:
 - S -> aAbB
 - A -> aA | a
 - B -> bB | b

(12+6)

- 4.
- a) Write a code in LEX to accept the following tokens: whitespace, if, then, else, identifier, number, <, <=, >, >=, <>, =.
- b) Construct a syntax-directed translation scheme that translates arithmetic expression from infix notation into postfix notation in which an operator appears after its operands. Give the annonated parse tree for the input 9-5*2.

(8+10)

- 5.
- a) Partition the given code into basic blocks and show how the produced flow graph is modified as code motion and induction variable elimination is applied on it.

1: PROD = 0 2: I = 1 3: $T_1 = 4 * I$ 4: $T_2 = addr(A) - 4$ 5: $T_3 = T_2[T_1]$ 6: $T_4 = addr(B) - 4$ 7: $T_5 = T_4[T_1]$ 8: $T_6 = T_3 * T_5$ 9: PROD = PROD + T_6 10: I = I + 1 11: If I <= 20 goto 3

b) Construct a grammar such that:

 $L(G) = \{w \in \{a,b\} \mid w \text{ has an equal number of a's and b's} \}$

c) Convert the following Mealy machine into a Moore machine.

	NEXT STATE			
	Input = 0		Input = 1	
PRESENT STATE	STATE	OUTPUT	STATE	OUTPUT
q1	q2	Z1	q3	Z1
q2	q2	Z2	q3	Z1
q3	q2	Z1	q3	Z2

⁽⁸⁺⁵⁺⁵⁾

6.

- a) Considering the following grammar, create a predictive parsing table and hence parse the string id+id*id.
 - Ē -> TE' E' -> +TE' | ε
 - T -> FT'
 - T' -> *FT' | ε
 - F -> (E) | id
- b) What is a DAG (Directed Acyclic Graph)? How does it help in code optimization? Construct a DAG for the following code:
 - a = b + cb = b dc = c + d
 - e = b + c

(12+6)

- 7.
- a) Design a Turing machine over {1,b} which can concatenate a pair of words, where $\sum = \{1\}$.
- b) What are synthesized and inherited attributes?
- c) Construct a pushdown automata equivalent to the following CFG and test whether 010000 is in N(A).

S -> 0BB

(7+4+7)