C0-R4.B4: COMPUTER SYSTEM ARCHITECTURE

NOTE:

1.	Answer question 1 and any FOUR from questions 2 to 7.						
2.	Parts of the same question should be answered together and in the same						
	sequence.						

Time: 3 Hours

Total Marks: 100

- 1.
- a) Perform following arithmetic operation using 2's complement integers.
 - i) 35+ (-10)
 - ii) 20 (-4)
- b) Write down the classification of computer according to Flynn.
- c) What is instruction pipeline? What are the problems associated with Instruction pipeline?
- d) What is direct addressing and indirect addressing mode? How many memory references are required in direct address and indirect address?
- e) Starting from the initial value of R=11010010, find out the sequence of values in R after logical shift left, circular shirt right, logical shift right and circular shift left.
- f) What are the four phases of instruction execution?
- g) Compare: Centralized and Distributed Shared Memory Architecture.

(7x4)

2.

- a) What are the sequences of operations required for Memory read and write?
- b) List and explain Shift micro-operations.
- c) Draw Artimatic circuit for following funcation table.

Select			Input	Output	
<i>S</i> ₁	S ₀	$C_{\rm in}$	Y	$D = A + Y + C_{\rm in}$	Microoperation
0	0	0	В	D = A + B	Add
0	0	1	В	D = A + B + 1	Add with carry
0	1	0	\overline{B}	$D = A + \overline{B}$	Subtract with borrow
0	1	1	\overline{B}	$D = A + \overline{B} + 1$	Subtract
1	0	0	0	D = A	Transfer A
1	0	1	0	D = A + 1	Increment A
1	1	0	1	D = A - 1	Decrement A
1	1	1	1	D = A	Transfer A

(4+6+8)

- 3.
- a) Write a short Note on DMA.
- b) Write down the characteristics of CISC and RISC architecture.
- c) What are the basic difference between branch instruction, Subroutine call and Interrupt?

(6+6+6)

4.

- a) Explain SISD, SIMD and MIMD architecture.
- b) Differentiate between Auxiliary and Associative memory.

- 5.
- a) By taking suitable subroutine assembly language program, explain what is subroutine?
- b) Draw Common Bus System diagram and explain procedure of transferring data from memory M using address location AR to register AC.

(8+10)

6.

- a) Compare and contrast 1's complement and 2's complement representation of integer numbers.
- b) Provide the significance of following registers in CPU. PC, AR, DR, IR, INPR, AC
- c) Draw and explain block diagram of General Register Organization of Computer. How the control word is crated for R1 \leftarrow R2 + R3 Operation.

(5+6+7)

- 7.
- a) Explain Various Addressing modes of Basic Computer.
- b) Write an assembly language program to multiply two positive numbers. (Numbers are 13_{10} , 10_{10}).
- c) What are the phases of instruction cycle? What are the micro-operations associated with first two phases? By drawing common bus system, explain micro-operations of first two phases.

(6+6+6)