NOTE :

1.	Answer question 1 and any FOUR from questions 2 to 7.
2.	Parts of the same question should be answered together and in the same
	sequence.

Time: 3 Hours

Total Marks: 100

- 1. (a) Prove that for every two integers a and b, if a and b are odd, then ab is odd.
 - (b) Consider the CFG
 S → S S + | S S * | a
 Construct parse tree for string aa*a+
 - (c) Draw a DFA for (111+100)*0
 - (d) Generate quadruple table for given three address code.
 - t1 = b*c
 - t2 = a+t1
 - t3 = b*c

$$t4 = d/t3$$

$$t5 = t2-t4$$

- (e) Prove the below given statement using mathematical induction. $1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$
- (f) What is DAG (Direct Acyclic graph) ? Find out the syntax tree and DAG for the following expression.
 a+a*(b-c) + (b-c)*d
- (g) What are the different phases of a Compiler ?
- **2.** (a) Construct a Syntax Directed Translation Scheme for a calculator that support + and * operations. Draw annotated parse tree for 3 + 5 * 4.
 - (b) Design a Turing machine to recognize all string given by (ab)*aba.
 - (c) List the roles of lexical analyzer.
 - Consider the given Mealy machine:

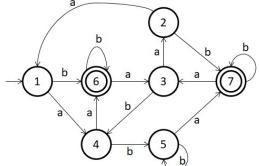
	Next state			
Present state	a=0		a=1	
	Next State	Output	Next state	Output
\rightarrow a	d	0	b	1
b	а	1	d	0
с	с	1	с	0
d	b	0	а	1

Construct Moore machine which is equivalent to it

(b) Construct Turing machine for $\{SS | S \in \{a,b\}^*\}$.

(c) Design PDA for
$$L = \{WcW^R | W \in \{a,b\}^*, W^R \text{ is reverse of } W\}.$$
 (6 + 6 + 6)

B5.2-R4


3.

(a)

 (7×4)

(8 + 5 + 5)

4. (a) Check, whether following DFA is minimized or not. If not, then get the minimized one.

(b) Explain Left factoring and Left recursion.

(10 + 8)

- 5. (a) Obtain LR(1) item set and CLR(1) parsing table for given grammar $S \rightarrow AA$ $A \rightarrow aA \mid b$
 - (b) Construct operator precedence table for given grammar $E \rightarrow E + E \mid E - E \mid E * E \mid E / E \mid E \land E \mid (E) \mid id$

(10 + 8)

- 6. (a) Explain CNF. Convert given grammar in CNF. S → AACD A → aAb | ^ C → aC | a D → aDa | bDb | ^
 (b) Contract NFA for a⁺ b (c | d) a* b using Kleene's theorem.
 (c) Generate code for the following three-address sequence assuming that p an
 - (c) Generate code for the following three-address sequence assuming that p and q are in memory locations: y = *qq = q + 4*p = yp = p + 4(8 + 6 + 4)
- 7. (a) Define pumping lemma and prove that $L=\{0^{i}1^{j} | j=i \text{ or } j=2i\}$ is not a regular language.
 - (b) Check given grammar is LL(1) or not. $S \rightarrow i E t S S' \mid a$ $S' \rightarrow e S \mid \in E \rightarrow b$
 - (c) Explain Input Buffering.

(6 + 6 + 6)