No. of Printed Pages : 11

Sl. No.

B4.1-R4 : COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES

NOTE :

- 1. Answer question 1 and any FOUR from questions 2 to 7.
- 2. Parts of the same question should be answered together and in the same sequence.
- **3.** Only Non-Programmable and Non-storage type Scientific Calculator allowed.

Time: 3 Hours Total Marks: 100

- 1. (a) Find the real root correct up to three decimal places of the equation $x^3 3x 5 = 0$ using Bisection method.
 - (b) Use Newton Raphson's Method to find the root of the equation $x^2 + 4\sin x = 0$ correct up to three decimal places.
 - (c) Prove that

(i)
$$\Delta \equiv \frac{1}{2}\delta^2 + \delta \sqrt{11\left(\frac{\delta^2}{4}\right)}$$

(ii) $hD \equiv \sinh^{-1}(\mu \delta)$.

Where, \triangle , δ , μ denotes as forward difference, central difference and average operator.

- (d) A committee of 3 people is to be appointed from 5 officers of the production department, 3 officers from purchase committee and 1 from sales Department. Find the committee in the following manner :
 - (i) There must be one from each category.
 - (ii) It should be at least one from purchase committee.
 - (iii) The officer from sales Department must be in the committee.
- (e) An MBA applies for a job in two firms X and Y. The probability of his being selected in firm X is 8/10 and being rejected at Y is 6/10. The probability of at least one of his applications being rejected is 5/10. What is the probability that he will be selected in one of the firms ?
- (f) Let X_1, X_2, \ldots, X_n be a sample of values from the population. Then prove that

expectation and variance of sample mean is μ and $\frac{\sigma^2}{n}$ where μ and σ^2 are the

population mean and the population variance.

(g) The manufacturer of a new fiberglass tire claims that its average life will be at least 40,000 miles. To verify this claim a sample of 12 tires is tested, with their lifetimes (in 1,000s of miles) being as follows :

5 1 2 3 4 6 7 8 9 10 11 12 Tire Life 36.1 40.2 33.8 38.5 42 35.8 37 41 36.8 37.2 33 36

Test the manufacturer's claim at the 5% level of significance. Given that at 5% level of significance, negative value of t-distribution is -1.796. (7x4)

2. (a) Solve the following system of equations by Crout's (factorization method)-

3x + 6y + 9z = 6-x + 2y + z = -22x + 4y + 7z = 5.

(b) Use Newton's Interpolation formula to compute y at x=24 from the following data :

x	21	25	29	33	37
y	18.4	17.8	17.1	16.3	15.5

(c) Evaluate
$$\int_{2}^{6} \frac{1}{\log_{10}(e^x)} dx$$
 by using Simpson's 1/3 rule by taking $h = 0.5$. (6+6+6)

- 3. (a) If f(0) = 1, f(1) = 3, f(4) = 261 and f(7) = 2409, find f(5) using Lagrange's interpolation formula.
 - (b) Find x for which y is maximum and find this value of y:

x	1.2	1.3	1.4	1.5	1.6
y	0.9320	0.9636	0.9855	0.9975	0.9996

- (c) A box contains 7 red 5 white and 4 black balls. A person drawn 4 balls from the box at random. Find the probability that among the balls drawn there is at least one ball of each colour. (7+7+4)
- **4.** (a) A random variable *X* is distributed at random between the values 0 and 1 so that its probability density function is $f(x) = kx^2 (1 x^3)$, where *k* is a constant. Find the value of *k*. Using this value of *k*, find its mean and variance.
 - (b) The joint probability distribution of two random variables *X* and *Y* is given by :

$$P(X=x,Y=y) = \frac{1+x^{(y+1)}}{68} \text{ for } x = 0, 1, 2, 3 \text{ and } y = 0, 1, 2.$$

Find the marginal distributions of *X* and *Y*. Also find the conditional probability distribution of *X* given Y = 1.

(c) Two random variables X and Y have the following joint probability density

function :
$$f(x,y) = \begin{cases} 2(x^2+y-3xy^2); & 0 < x < 1, 0 < y < 1 \\ 0, & \text{otherwise} \end{cases}$$

Find the Variance of *X* and *Y*. Also find Covariance between *X* and *Y*.

(6+6+6)

5. As an application of Central Limit Theorem, show that if E such that (a)

P(
$$|\bar{\chi} - \mu| < E$$
)>0.95, then the minimum sample size n is given by n = $\begin{cases} \frac{(1.96)^2 \sigma^2}{E^2} \\ E^2 \end{cases}$

where μ and σ^2 are the mean and variance respectively of the population and $\bar{\chi}$ is the mean of the random sample, E is the permissible error and at 5%, test statistics is 1.96.

- A sample of 900 members has a mean 3.4 cms and standard deviation 2.61 cms. (b) Is the sample taken from a large population of mean 3.25 cms and s.d. 2.61 cms? If the population is normal and its mean is unknown, find 95% and 98% fiducial limits of true mean.(here value of test statistics at 5% level of significance is 1.96 and 2% level of significance is 2.33 from Normal table)
- Using the method of least squares, derive the normal equations to fit the curve (c) $y = ax^2 + bx$. Hence fit this curve to the following data :

x	1	2	3	4	5	6	7	8	
у	1	1.2	1.8	2.5	3.6	4.7	6.6	9.1	(6+6+6)

6. Using the following data, find out the two lines of regression. Hence, compute (a) the Karl Pearson's coefficient of correlation :

> $\Sigma X = 250, \ \Sigma Y = 300, \ \Sigma X Y = 7900,$ $\Sigma X^2 = 6500$, $\Sigma Y^2 = 10,000$, N = 10.

- What is Gamma Distribution? Show that the mean value of positive square root (b) of a $\gamma(\mu)$ variate is $\Gamma(\mu + \frac{1}{2})/\Gamma(\mu)$. Hence prove that the mean deviation of a normal variate from its mean is $\sigma \sqrt{2/\pi}$, where σ is the standard deviation.
- The weights of a population of workers have mean 167 and standard (c) deviation 27.
 - (i) If a sample of 36 workers is chosen, approximate the probability that the sample mean of their weights lies between 163 and 170.
 - (ii) Repeat part (i) when the sample is of size 144.

(6+6+6)

7. (a) Fit a Poisson distribution to the following data and best the goodness of fit given that χ^2 for 3 degree of freedom at 5% level of significance is 7.81 :

x	:	0	1	2	3	4
f	:	109	65	22	3	1

(b) From the following data of age of husbands and age of wives, determine to regression lines and estimate the husband's age when wife's age is 16.

husband's age	36	23	27	28	28	29	30	31	38	35
wife's age	28	18	20	22	27	21	29	27	29	28

(c) Suppose that *n* independent trials, each of which is a success with probability *p*, are performed. What is the maximum likelihood estimator of *p* ?

(7+5+6)

- o 0 o -

Areas Under the Standard Normal Curve from 0 to z

2	0	1	2	3	4	5	6	7	8	9
0.0	.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359
0.1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.075
0.2	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	.114
0.3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.151
0.4	.1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	.1844	.187
0.5	.1915	.1950	.1985	.2019	.2054	.2088	.2123	.2157	.2190	.222
0.6	.2258	.2291	.2324	.2357	2389	2422	.2454	.2486	.2518	254
0.7	.2580	.2612	.2642	.2673	.2704	2734	.2764	.2794	.2823	.285
0.8	.2881	.2910	.2939	.2967	.2996	.3023	.3051	.3078	.3106	.313
0.9	.3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	.3365	.338
1.0	3413	3438	3461	8485	2508	3531	3554	3577	3599	862
11	3643	3665	3686	3708	2790	3749	3770	3790	3810	383
1.2	.3849	3869	3888	.3907	3925	3944	3962	3980	3997	401
1.3	4032	4049	4066	4082	4099	.4115	.4131	4147	4162	417
1.4	.4192	.4207	.4222	.4236	.4251	.4265	.4279	.4292	.4306	.431
1.5	.4332	4345	4357	4370	4382	4394	.4406	4418	4429	444
1.6	.4452	.4463	4474	4484	4495	4505	4515	4525	4595	454
1.7	4554	4564	4573	4582	4591	4599	4608	4616	4625	463
1.8	.4641	4649	4656	4664	4671	.4678	4686	4693	4699	.470
1.9	.4713	.4719	.4726	.4732	.4738	.4744	.4750	.4756	.4761	.476
2.0	.4772	.4778	.4783	.4788	.4793	.4798	.4803	4808	.4812	.4817
2.1	.4821	.4826	.4830	.4834	.4838	.4842	.4846	.4850	4854	.485
2.2	.4861	.4864	.4868	.4871	.4875	.4878	.4881	.4884	.4887	.4890
2.3	.4893	.4896	.4898	.4901	.4904	.4906	.4909	.4911	4913	.4916
2.4	.4918	.4920	.4922	.4925	.4927	.4929	.4931	.4932	.4934	.4936
2.5	.4938	.4940	.4941	.4943	.4945	.4946	.4948	.4949	.4951	.4953
2.6	.4953	.4955	.4956	.4957	.4959	.4960	.4961	.4962	.4963	.4964
2.7	.4965	.4966	.4967	.4968	.4969	.4970	.4971	.4972	.4973	.4974
2.8	.4974	.4975	.4976	.4977	.4977	.4978	.4979	.4979	.4980	.498)
2.9	.4981	.4982	.4982	.4983	.4984	.4984	.4985	.4985	.4986	.4986
8.0	.4987	.4987	.4987	.4988	.4988	.4989	.4989	.4989	.4990	.4990
3.1	.4990	.4991	.4991	.4991	.4992	.4992	.4992	.4992	.4993	.4993
3.2	.4993	.4993	.4994	.4994	.4994	.4994	.4994	.4995	.4995	.4995
3.3	.4995	.4995	.4995	.4996	.4996	.4996	.4996	.4996	.4996	.4997
3.4	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4998
3.5	.4998	.4998	.4998	.4998	.4998	.4998	.4998	.4998	.4998	.4998
3.6	.4998	.4998	.4999	.4999	.4999	.4999	.4999	.4999	.4999	.4999
3.7	.4999	.4999	.4999	.4999	.4999	.4999	.4999	.4999	.4999	.4999
3.8	.4999	.4999	.4999	.4999	.4999	.4999	.4999	.4999	.4999	.4999

Percentile Values (t_p) for Student's t Distribution with v Degrees of Freedom (shaded area = p)

	£.005	£.00	t.ors	£.85	t.10	t.so	t.15	£.70	t	t.45
1	63.66	31.82	12.71	6.31	3.08	1.376	1.000	.727	.325	.158
2	9.92	6.96	4.30	2.92	1.89	1.061	.816	.617	.289	.142
3	5.84	4.54	3.18	2.35	1.64	.978	.765	.584	.277	.137
.4	4.60	3.75	2.78	2.13	1.53	.941	.741	.569	.271	.134
5	4.03	3.36	2.57	2.02	1.48	.920	.727	.559	.267	.132
6	3.71	3.14	2.45	1.94	1.44	.906	.718	.553	.265	.131
7	8.50	3.00	2.36	1.90	1.42	.896	.711	.549	.263	.130
8	3.36	2.90	2.31	1.86	1.40	.889	.706	.546	.262	.130
9	3.25	2.82	2.26	1.83	1.38	.883	.703	.543	.261	.129
10	3.17	2.76	2.23	1.81	1.87	.879	.700	.542	.260	.129
11	3.11	2.72	2.20	1.80	1.36	.876	.697	.540	.260	.129
12	3.06	2.68	2.18	1.78	1.36	.873	.695	.539	.259	.128
18	3.01	2.65	2.16	1.77	1.35	.870	.694	.538	.259	.128
14	2.98	2.62	2.14	1.76	1.84	.868	.692	.537	.258	.128
15	2.95	2.60	2.13	1.75	1.34	.866	.691	.536	.258	.128
16	2.92	2.58	2.12	1.75	1.34	.865	.690	.535	.258	.128
17	2.90	2.57	2.11	1.74	1.88	.863	.689	.534	.257	.128
18	2.88	2.55	2.10	1.73	1.33	.862	.688	.534	.257	.127
19	2.86	2.54	2.09	1.73	1.33	.861	.688	.533	.257	.127
20	2.84	2.53	2.09	1.72	1.32	.860	.687	.533	.257	.127
21	2.83	2.52	2.08	1.72	1.82	.859	.686	.532	.257	.127
22	2.82	2.51	2.07	1.72	1.32	.858	.686	.532	.256	.127
23	2.81	2.50	2.07	1.71	1.32	.858	.685	.532	.256	.127
24	2.80	2.49	2.06	1.71	1.32	.857	.685	.531	.256	.127
25	2.79	2.48	2.06	1.71	1.32	.856	.684	.531	.256	.127
26	2.78	2.48	2.06	1.71	1.32	.856	.684	.531	.256	.127
27.	2.77	2.47	2.05	1.70	1.31	.855	.684	.531	.256	.127
28	2.76	2.47	2.05	1.70	1.31	.855	.683	.530	.256	.127
29	2.76	2.46	2.04	1.70	1.31	.854	.683	.530	.256	.127
30	2.75	2.46	2.04	1.70	1.31	.854	.683	.530	.256	.127
40	2.70	2.42	2.02	1.68	1.80	.851	.681	.529	.255	.126
60	2.66	2.39	2.00	1.67	1.30	.848	.679	.527	.254	.126
20	2.62	2.36	1.98	1.66	1.29	.845	.677	.526	.254	.120
	2.58	2.33	1.96	1.645	1.28	.842	.674	.524	.253	.120

Source: R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and Medical Research (5th edition), Table III, Oliver and Boyd Ltd., Edinburgh, by permission of the authors and publishers.

Percentile Values (χ_p^2) for the Chi-Square Distribution with ν Degrees of Freedom (shaded area = p)

,	x ² ,995	x ² .95	X.875	x ² .05	x ² .90	x.75	x ² ,50	X.25	x ² .10	x ² .05	X ² .025	X,01	$\chi^{2}_{,005}$
1	7.88	6.63	5.02	3.84	2.71	1.32	.455	.102	.0158	.0039	.0010	.0002	.0000
2	10.6	9.21	7.38	5.99	4.61	2.77	1.39	.575	.211	.103	.0506	.0201	.0100
3	12.8	11.3	9.35	7.81	6.25	4.11	2.37	1.21	.584	.352	.216	.115	.072
4	14.9	13.3	11.1	9.49	7.78	5.39	3.36	1.92	1.06	.711	.484	.297	.207
5	16.7	15.1	12.8	11.1	9.24	6.63	4.85	2.67	1.61	1.15	.831	.554	.412
6	18.5	16.8	14.4	12.6	10.6	7.84	5.85	3.45	2.20	1.64	1.24	.872	.676
7	20.3	18.5	16.0	14.1	12.0	9.04	6.35	4.25	2.83	2.17	1.69	1.24	.989
8	22.0	20.1	17.5	15.5	13.4	10.2	7.34	5.07	3.49	2.73	2.18	1.65	1.34
9	23.6	21.7	19.0	16.9	14.7	11.4	8:34	5.90	4.17	3.33	2.70	2.09	1.73
10	25.2	23.2	20.5	18.3	16.0	12.5	9.84	6.74	4.87	3.94	8.25	2.56	2.16
11	26.8	24.7	21,9	19.7	17.3	13.7	10.3	7.58	5.58	4.57	8.82	8.05	2.60
12	28.3	26.2	23.3	21.0	18.5	14.8	11.3	8.44	6.30	5.23	4.40	8.57	3.07
13	29.8	27.7	24.7	22.4	19.8	16.0	12.3	9.30	7.04	5.89	5.01	4.11	3.57
14	31.3	29.1	26.1	23.7	21.1	17.1	13.3	10.2	7.79	6.57	5.63	4.66	4.07
15	32.8	30.6	27.5	25.0	22.3	18.2	14.8	11.0	8.55	7.25	6.26	5.23	4.60
16	34.3	32.0	28.8	26.3	23.5	19.4	15.3	11.9	9.31	7,96	6.91	5.81	5.14
17	85.7	33.4	30.2	27.6	24.8	20.5	16.3	12.8	10.1	8.67	7.56	6.41	5.70
18	37.2	34.8	31.5	28.9	26.0	21.6	17.8	13.7	10.9	9.39	8.23	7.01	6.26
19	38.6	36.2	32.9	30.1	27.2	22.7	18.3	14.6	11.7	10.1	8.91	7.63	6.84
20	40.0	37.6	34.2	81.4	28.4	23.8	19.3	15.5	12.4	10.9	9.59	8.26	7.43
21	41.4	38.9	35.5	32.7	29.6	24.9	20.3	16.3	13.2	11.6	10.3	8.90	8.03
22	42.8	40.3	36.8	33.9	30.8	26.0	21.3	17.2	14.0	12.3	11.0	9.54	8.64
23	44.2	41.6	38.1	35.2	32.0	27.1	22.3	18.1	14.8	13.1	11.7	10.2	9.26
24	45.5	43.0	39.4	36.4	33.2	28.2	23.3	19.0	15.7	13.8	12.4	10.9	9.89
25	46.9	44.8	40.6	37.7	84.4	29.3	24.3	19.9	16.5	14.6	13.1	11.5	10.5
26	48.3	45.6	41.9	38.9	35.6	80.4	25.3	20.8	17.3	15.4	13.8 -	12.2	11.2
27	49.6	47.0	43.2	40.1	36.7	31.5	26.3	21.7	18.1	16.2	14.6	12.9 .	11.8
28	51.0	48.3	44.5	41.8	37.9	32.6	27.8	22.7	18.9	16.9	15.3	13.6	12.5
29	52.3	49.6	45.7	42.6	39.1	33.7	28.3	23.6	19.8	17.7	16.0	14.3	13.1
30	53.7	50.9	47.0	43.8	40.8	34.8	29.3	24.5	20.6	18.5	16.8	15.0	13.8
40	66.8	63.7	59.8	55.8	51.8	45.6	39.3	88.7	29.1	26.5	24.4	22.2	20.7
50	79.5	76.2	71.4	67.5	63.2	56.8	49.3	42.9	37.7	34.8	32.4	29.7	28.0
60	92.0	88.4	83.3	79.1	74.4	67.0	59.8	52.3	46.5	43.2	40.5	87.5	85.5
70	104.2	100.4	95.0	90.5	85.5	77.6	69.3	61.7	55.8	51.7	48.8	45.4	43.3
80	116.3	112.3	106.6	101.9	96.6	88.1	79.3	71.1	64.3	60.4	57.9	58.5	51 2
90	128.3	124.1	118.1	113.1	107.6	98.6	89.9	80.6	78.8	69.1	65.6	61.8	59.2
100	140.2	135.8	129.6	124.2	118.5	109 1	99.9	90.1	82.4	77.9	74.9	70.1	67.3
100	140.6	100.0	100.0	14-1+0	110.0	109.1	00.0	00.1	06.1	11.0	14-6	10.1	01.0

Source: Catherine M. Thompson, Table of percentage points of the χ^2 distribution, Biometrika, Vol. 32 (1941), by permission of the author and publisher.

95th Percentile Values for the *F* Distribution (*v*₁ degrees of freedom in numerator) (*v*₂ degrees of freedom in denominator)

12	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	
1	161	200	216	225	230	234	237	239	241	242	244	246	248	249	250	251	252	253	254
2	18.5	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.5	19.5	19.5	19.5	19.5	19.5
3	10.1	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.53
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69	5.66	5.63
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.37
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.93
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.71
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.54
11	4.84	3.98	8.59	3.36	3.20	8.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2.45	2.40
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2,80	2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.38	2.34	2.30
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30	2.25	2.21
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.18	2.13
15	4.54	3 68	3.29	3.06	2.90	2.79	2.71	2.64	2.69	2.54	2.48	2.40	2.83	2.29	2.25	2.20	2.16	2.11	2.07
16	4.49	8.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.11	2.05	2.01
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.19	2.15	2.10	2.06	2.01	1.96
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.15	2.11	2.06	2.02	1.97	1.92
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.98	1.93	1.88
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.95	1.90	1.84
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2.18	2.10	2.05	2.01	1.96	1.92	1.87	1.81
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.89	1.84	1.78
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.82	2.27	2.20	2.13	2.05	2.01	1.96	1.91	1.86	1.81	1.76
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.84	1.79	1.78
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.82	1,77	1.71
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2,15	2.07	1.99	1.95	1.90	1.85	1.80	1.75	1.69
27	4.21	3.35	2.96	2.78	2.57	2.46	2.37	2.31	2.25	2.20	2.13	2.06	1.97	1.93	1.88	1.84	1.79	1.73	1.67
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.12	2.04	1.96	1.91	1.87	1.82	1.77	1.71	1.65
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	2.10	2.03	1.94	1.90	1.85	1.81	1.75	1.70	1.64
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.01	1.93	1.89	1.84	1.79	1.74	1.68	1.62
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.64	1.58	1.51
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.92	1.84	1.75	1.70	1.65	1.59	1.53	1.47	1.39
120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96	1.91	1.83	1.75	1.66	1.61	1.55	1.50	1.43	1.35	1.25
	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.75	1.67	1.57	1.52	1.46	1.39	1.32	1.22	1.00

Source: E. S. Pearson and H. O. Hartley, Biometrika Tables for Statisticians, Vol. 2 (1972), Table 5, page 178, by permission.

99th Percentile Values for the *F* Distribution (v₁ degrees of freedom in numerator) (v₂ degrees of freedom in denominator)

	_	_		-		-	-	-	-	and the second second		-		-	The local diversion of	-			
12	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	80
1	4052	5000	5403	5625	5764	5859	5928	5981	6023	6056	6106	6157	6209	6235	6261	6287	6313	6339	6366
2	98.5	99.0	99.2	99.2	99.3	99.3	99.4	99.4	99.4	99.4	99.4	99.4	99.4	99.5	99.5	99.5	99.5	99.5	99.5
3	84.1	30.8	29.5	28.7	28.2	27.9	27.7	27.5	27.3	27.2	27.1	26.9	26.7	26.6	26.5	26.4	26.3	26.2	26.1
4	21.2	18.0	16.7	16.0	15.5	15.2	15.0	14.8	14.7	14.5	14.4	14.2	14.0	13.9	13.8	13.7	13.7	13.6	13.5
5	16.3	13.3	12.1	11.4	11.0	10.7	10.5	10.3	10.2	10.1	9.89	9.72	9.55	9.47	9.38	9.29	9.20	9.11	9.02
. 6	13.7	10.9	9.78	9.15	8.75	8.47	8.26	8.10	7.98	7.87	7.72	7.56	7.40	7.31	7.23	7.14	7.06	6.97	6.88
7	12.2	9.55	8.45	7.85	7,46	7.19	6.99	6.84	6.72	6.62	6.47	6.31	6.16	6.07	5.99	5.91	5.82	5.74	5.65
8	11.3	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91	5.81	5.67	5.52	5.36	5.28	5.20	5.12	5.03	4.95	4.86
9	10.6	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.85	5.26	5.11	4.96	4.81	4.73	4.65	4.57	4.48	4.40	4.31
10	10.0	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94	4.85	4.71	4.56	4.41	4.33	4.25	4.17	4.08	4.00	3.91
11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63	4.54	4.40	4.25	4.10	4.02	3.94	3.86	3.78	3.69	3.60
12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39	4.30	4.16	4.01	3.86	8.78	3.70	3.62	3.54	3.45	3.36
13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19	4.10	3.96	3.82	3.66	3.59	3.51	3.43	3.34	3.25	3.17
14	8.86	6.51	5.56	5.04	4.70	4.46	4.28	4.14	4.03	3.94	3,80	3.66	3.51	3.43	3.35	3.27	3.18	3.09	3.00
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89	3.80	3.67	3.52	3.37	3.29	3.21	3.13	3.05	2.96	2.87
16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78	3.69	3.55	3.41	3.26	3.18	3.10	3.02	2.93	2.84	2.75
17	8.40	6.11	5.19	4.67	4.34	4.10	3.93	3.79	3.68	3.59	3.46	3.31	3.16	3.08	3.00	2.92	2.83	2.75	2.65
18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60	3.51	3.37	3.23	3.08	3.00	2.92	2.84	2.75	2.66	2.57
19	8.18	5.93	5.01	4.50	4.17	3.94	8.77	3.63	3.52	3.43	3.30	8.15	3.00	2.92	2.84	2.76	2.67	2.58	2.49
20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	3.37	3.23	8.09	2.94	2.86	2.78	2.69	2.61	2.52	2.42
21	8.02	5.78	4.87	4.87	4.04	8.81	3.64	3.51	3.40	3.31	3.17	3.03	2.88	2.80	2.72	2.64	2.55	2.46	2.36
22	7.95	5.72	4.82	4.31	3.99	3.76	3.59	8.45	3.35	3.26	3.12	2.98	2.83	2.75	2.67	2.58	2.50	2.40	2.31
23	7.88	5.66	4,76	4.26	3.94	3.71	3.54	3.41	3.30	3.21	3.07	2.93	2.78	2.70	2.62	2.54	2.45	2.35	2.26
24	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26	3.17	3.03	2.89	2.74	2.66	2.58	2.49	2.40	2.31	2.21
25	7.77	5.57	4.68	4.18	3.86	3.63	3.46	3.32	3.22	3.13	2.99	2.85	2.70	2.62	2.54	2.45	2.36	2.27	2.17
26	7.72	5.53	4.64	4.14	3.82	3.59	3.42	8.29	3.18	3.09	2.96	2.82	2.66	2.58	2.50	2.42	2.33	2.23	2.13
27	7.68	5.49	4.60	4.11	3.78	3.56	3.39	3.26	3.15	3.06	2.93	2.78	2.63	2.55	2.47	2.38	2.29	2.20	2.10
28	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	8.12	3.03	2.90	2.75	2.60	2.52	2.44	2.35	2.26	2.17	2.06
29	7.60	5.42	4.54	4.04	3.73	3.50	3.33	3.20	3.09	3.00	2.87	2.73	2.57	2.49	2.41	2.33	2.23	2.14	2.03
30	7.56	5.39	4.51	4.02	8.70	3.47	3.30	8.17	3.07	2.98	2.84	2.70	2.55	2.47	2.39	2.30	2.21	2.11	2.01
40	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89	2.80	2.66	2.52	2,37	2.29	2.20	2.11	2.02	1.92	1.80
60	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72	2.63	2.50	2.35	2.20	2.12	2.03	1.94	1.84	1.73	1.60
120	6.85	4.79	3.95	3,48	3.17	2.96	2.79	2.66	2.56	2.47	2.34	2.19	2.03	1.95	1.86	1.76	1.66	1.53	1.38
80	6.63	4.61	3.78	3.32	3.02	2.80	2.64	2.51	2.41	2.32	2.18	2.04	1.88	1.79	1.70	1.59	1.47	1.32	1.00

Source: E. S. Pearson and H. O. Hartley, Biometrika Tables for Statisticians, Vol. 2 (1972), Table 5, page 180, by permission.

λ.	0	1	2	3	4	5	6	7	8	9
0.0	1.0000	.9900	.9802	.9704	.9608	.9512	.9418	.9324	.9231	.9139
0.1	.9048	.8958	.8869	.8781	.8694	.8607	.8521	.8437	.8353	.8270
0.2	.8187	.8106	.8025	.7945	.7866	.7788	.7711	.7634	.7558	.7483
0.3	.7408	.7334	.7261	.7189	.7118	.7047	.6977	.6907	.6839	.6771
0.4	.6703	.6636	.6570	.6505	.6440	.6376	.6313	.6250	.6188	.6126
0.5	.6065	.6005	.5945	.5886	.5827	.5770	.5712	.5655	.5599	.5543
0.6	.5488	.5434	.5379	.5326	.5273	.5220	.5169	.5117	.5066	.5016
0.7	.4966	.4916	.4868	.4819	.4771	.4724	.4677	.4630	.4584	.4538
0.8	.4493	.4449	.4404	.4360	.4317	.4274	.4232	.4190	.4148	.4107
0.9	.4066	.4025	.3985	.3946	.3906	.3867	.3829	.3791	.3753	.3716

Values of $e^{-\lambda}$ (0 < λ < 1)

 $(\lambda = 1, 2, 3, ..., 10)$

λ	1	2	3	4	5	6	7	8	9	10
e-1	.36788	.13534	.04979	.01832	.006738	.002479	.000912	.000335	.000123	.000045

Note: To obtain values of $e^{-\lambda}$ for other values of λ , use the laws of exponents. Example: $e^{-3.48} = (e^{-3.00})(e^{-0.44}) = (0.04979)(0.6188) = 0.03081.$

One-Sided Test :												
$\alpha =$.10	.05	.025	.01	.005		$\alpha =$.10	.05	.025	.01	.005
Two-Sided Test :												
α=	.20	.10	.05	.02	.01		α=	.20	.10	.05	.02	.01
n = 1	.900	.950	.975	.990	.995		n = 21	.226	.259	.287	.321	.344
2	.684	.776	.842	.900	.929		22	.221	.253	.281	.314	.337
3	.565	.636	.708	.785	.829		23	.216	.247	.275	.307	.330
4	.493	.565	.624	.689	.734		24	.212	.242	.269	.301	.323
5	.447	.509	.563	.627	.669		25	.208	.238	.264	.295	.317
6	.410	.468	.519	.577	.617		26	.204	.233	.259	.290	.311
7	.381	.436	.483	.538	.576		27	.200	.229	.254	.284	.305
8	.358	.410	.454	.507	.542		28	.197	.225	.250	.279	.300
9	.339	.387	.430	.480	.513		29	.193	.221	.246	.275	.295
10	.323	.369	.409	.457	.489		30	.190	.218	.242	.270	.290
11	.308	.352	.391	.437	.468		31	.187	.214	.238	.266	.285
12	.296	.338	.375	.419	.449		32	.184	.211	.234	.262	.281
13	.285	.325	.361	.404	.432		33	.182	.208	.231	.258	.277
14	.275	.314	.349	.390	.418		34	.179	.205	.227	.254	.273
15	.266	.304	.338	.377	.404		35	.177	.202	.224	.251	.269
16	.258	.295	.327	.366	.392		36	.174	.199	.221	.247	.265
17	.250	.286	.318	.355	.381		37	.172	.196	.218	.244	.262
18	.244	.279	.309	.346	.371		38	.170	.194	.215	.241	.258
19	.237	.271	.301	.337	.361		39	.168	.191	.213	.238	.255
20	.232	.265	.294	.329	.352		40	.165	.189	.210	.235	.252
	Approximation							1.07	1.22	1.36	1.52	1.63
	For n > 40							\sqrt{n}	\sqrt{n}	\sqrt{n}	\sqrt{n}	\sqrt{n}

Table 7. Critical Values of the Kolmogorov-Smirnov One Sample TestStatistics This table gives the values of $D_{n.a}^+$ and $D_{n.a}$ for which $\alpha \ge P\{D_n^+ > D_{n.a}^+\}$ and $\alpha \ge P\{D_n > D_{n.a}^-\}$ for some selected values of *n* and *a*.

Source. Adapted by permission from Table 1 of Leslie H. Miller. Table of Percentage points of Kolmogorov statistics, J. Am. Stat. Assoc. 51 (1956). 111-121.