No. of Printed Pages: 2

Sl. No.

B0-R4: BASIC MATHEMATICS

NOTE:

1. Answer question 1 and any FOUR from questions 2 to 7.

2. Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours Total Marks: 100

1. (a) Show that
$$A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$
 is an orthogonal matrix.

(b) Evaluate
$$\lim_{x\to 0} \frac{xe^x - \log(1+x)}{x^2}$$
.

(c) Find the angle between two vectors
$$A = 4\vec{i} - 2\vec{j} - \vec{k}$$
 and $B = 4\vec{i} - 2\vec{j} + 4\vec{k}$.

(d) Express the complex number
$$(2+3i)(3-4i)$$
 in the form $a+ib$.

(e) Solve the differential equation
$$(x+1)\frac{dy}{dx} = x(y^2+1)$$
.

(f) Test the convergence of the series
$$\frac{1}{2} + \frac{2!}{8} + \frac{3!}{32} + \dots$$

(g) Evaluate
$$\int_{0}^{\frac{\pi}{4}} \sqrt{1 + \cos 4x} \, dx.$$
 (7x4)

2. (a) Find the Eigen value and Eigen vectors of the matrix
$$A = \begin{bmatrix} 1 & -6 & -4 \\ 0 & 4 & 2 \\ 0 & -6 & -3 \end{bmatrix}$$
.

(b) Find the all five value of the expression
$$(1 + i)^{\frac{1}{5}}$$
. (10+8)

3. (a) Find the area of the region bounded by the curves $y = x^4$ and y = 8x in the positive quadrant.

(b) Find the Taylor series expansion for
$$\log_e \cos x$$
 about the point $\frac{\pi}{3}$. (9+9)

Page 1 B0-R4-01-21

- **4.** (a) Find the value of c for the function $(x-4)^2 + 1$ on the interval [3, 6] that satisfies the mean value theorem.
 - (b) Find the equation of the hyperbola with the vertices $(0, \pm 6)$ and $e = \frac{5}{3}$ and also find its foci.

(c) Test the convergence of the series
$$\sum_{n=1}^{\infty} \frac{n+2}{(n+1)\sqrt{n}}.$$
 (6+6+6)

- 5. (a) Solve, with the help of matrices the simultaneous equations x + 2y + 3z = 4, x + 4y + 9z = 6, x + y + z = 3.
 - (b) Evaluate $\int \frac{xe^x}{(x+1)^2} dx$.
 - (c) Find the values of constants a and b such that

$$\lim_{x \to 0} \frac{axe^x - b\log(1+x) + x}{x^3} = \frac{-1}{18}$$
 (6+6+6)

- 6. (a) Using the properties of determines, solve for $x \begin{vmatrix} a+x & a-x & a-x \\ a-x & a+x & a-x \\ a-x & a-x & a+x \end{vmatrix} = 0$.
 - (b) Solve the following differential equation : $(1+y^2)dx = (\tan^{-1} y x)dy$
 - (c) Find the centre, the length of the axes and the eccentricity of the ellipse $2x^2 + 3y^2 4x 12y + 13 = 0$. (6+6+6)
- 7. (a) Test the convergence of the series $1 \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} \frac{1}{4\sqrt{4}} + \dots$
 - (b) Find the volume of the solid generated by revolving the region enclosed by $x = \frac{2}{y}$, y = 2, y = 6 about the *y*-axis.
 - (c) Find inverse of $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$ by elementary transformations. (6+6+6)