No. of Printed Pages: 2

Sl. No.

C8-R4: INFORMATION SECURITY

NOTE:

1. Answer question 1 and any FOUR from questions 2 to 7.

2. Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours Total Marks: 100

- 1. (a) Show that permutation operation over 3-bit binary is group.
 - (b) Give the characteristics of Hill Cipher.
 - (c) Apply the statistical attack over cipher text "Yljhqèuh flskhu lv wkh vhtxhqfh ri Fdhvdu flskhuv" and find the key value used for encryption using ceaser cipher.
 - (d) Compute 21^{-1} mod 103 using extended Euclidian algorithm.
 - (e) Explain the Euler's totient function using suitable example.
 - (f) Explain the point doubling and point addition in elliptic curve cryptography.
 - (g) How does RC4 Stream Cipher key generation work?

(7x4)

- **2.** (a) The Data Encryption Standard (DES) is a symmetric-key algorithm for the encryption of electronic data. Explain working of round key generation in DES.
 - (b) Find the multiplication of $(x^6 + x^4 + x + 1) \otimes (x^7 + x^6 + x^3 + x)$ in GF(2⁸) using irreducible polynomial $m(x) = x^8 + x^4 + x^3 + x + 1$.
 - (c) Apply the Chinese Remainder Theorem (CRT) for $x = 5 \mod 10$, $x = 4 \mod 9$ and $x = 3 \mod 8$ and find the value of x. (6+5+7)
- **3.** (a) What is secret sharing scheme? Explain working of Shamir's secret sharing protocol using suitable example.
 - (b) Compute the index of coincidence for "Counting the frequency of letters is an important part of the cryptanalysis". (9+9)
- **4.** (a) Explain the following terms :
 - 1. Quadratic residue
 - 2. Primitive element in the group
 - 3. Order of Group
 - 4. Order of the element in the group
 - (b) What is factorization and discrete logarithm problem? How factorization problem makes RSA more secure? Prove the correctness of RSA decryption.
 - (c) List and explain the fields of X.509 digital certificate standard. (4+6+8)

Page 1 C8-R4-01-21

- 5. (a) Consider the parameters p = 283, q = 47, g = 60 and public key, B = 216. Show working of encryption and decryption using ElGamal cryptosystem.
 - (b) Explain Digital Signature Standard (DSS).
 - (c) Compute 11^{13} mod 53-using fast exponentiation computation method. (6+4+8)
- **6.** (a) Differentiate the SHA1 and MD5 algorithm.
 - (b) List and explain the PRNG Requirements. Explain working of Blum Blum Shub Generator using suitable example.
 - (c) Find the factors of 6994241 using Pollard p-1 factorization method (Take Bias B=8). (4+6+8)
- 7. (a) Explain Electronic Code Book (ECB) Mode of block cipher.
 - (b) Demonstrate the Diffie-Hellman key exchange using p=11, g=2, $x_A=9$, $x_B=4$.
 - (c) Solve $3^x = 5 \mod 7$ using Shank's Baby step Giant Step algorithm. (5+5+8)

- o 0 o -

Page 2 C8-R4-01-21