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B0-R4 : BASIC MATHEMATICS

1. (a) Find the modulus and amplitude of 
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(c) Show that the matrix 
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 is a Hermitian matrix.

(d) Test the convergence of the series 
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(e) Prove that       
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(g) Find the point on the curve x=a (θ+sin θ), y=a (1−cos θ), where the tangent is inclined

at an angle 
4

π

 to the x-axis.

2. (a) Solve the following system of simultaneous linear equations by Gauss elimination
method :
4x+y+z=4
x+4y−2z=4
3x+2y−4z=6

(b) If 
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NOTE :

1. Answer question 1 and any FOUR from questions 2 to 7.

2. Parts of the same question should be answered together and in the same sequence.

Sl. No.

(6+6+6)

 (7x4)
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3. (a) Obtain the eigen values and the eigen vectors for the matrix 

2 0 1

A 1 2 0

1 0 2
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(b) Show that the length of the arc of the parabola y2=4ax intercepted between vertex

and an extremity of the latus rectum is a ( )2   log 1  2 
 
+ + .

4. (a) If x=cosθ+i sinθ and y=cosϕ+i sinϕ.  Show that the value of

m n

m n

1
is 2 cos(m n )x y

x y
         + θ+ ϕ .

(b) Find the asymptote of the following curve x3+2x2y−xy2−2y3+xy−y2−1=0.

(c) Evaluate 
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5. (a) Find the maximum and minimum values of the function f (x)=4x−1−(x−1)−1 for all
x∈R−{ 0, 1}.

(b) Examine the continuity of the function
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(c) Expand the polynomial f (x) = x3−2x2+3x+5 in the positive integral powers of (x−2).

(6+6+6)

6. (a) Find the area of the ellipse 
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(b) Find the equation of ellipse under the conditions :

Center at (0, 0); Latus rectum=10 and distance between foci=Length of minor axis.
(9+9)

7. (a) Solve 
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(b) If a
∧  and b

∧
 are unit vectors and θ is the angle between them, Show that

      

1sin a b
2 2

θ = −ɵɵ .

(c) Find the parametric equation of the line through the point (1,−2, 2) and perpendicular
to the plane x+2y−3z=5.

(6+6+6)
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