No. of Printed Pages : 2

B0-R4 : BASIC MATHEMATICS

NOTE :

- 1. Answer question 1 and any FOUR from questions 2 to 7.
- 2. Parts of the same question should be answered together and in the same sequence.

Time : 3 Hours

Total Marks : 100

1. (a) Find the modulus and amplitude of
$$\frac{(1+i)(1+\sqrt{3i})}{1-i}$$
.
(b) Evaluate $\lim_{x\to 0} \frac{\tan x - \sin x}{x^3}$.
(c) Show that the matrix $A = \begin{bmatrix} 3 & 7+4i & -2+5i \\ 7-4i & -2 & 3+i \\ -2-5i & 3-i & 4 \end{bmatrix}$ is a Hermitian matrix.
(d) Test the convergence of the series $\frac{1}{\sqrt{1.2}} + \frac{1}{\sqrt{2.3}} + \frac{1}{\sqrt{3.4}} + ...$
(e) Prove that $\int_{0}^{\frac{\pi}{4}} \log (1+\tan\theta) d\theta = \frac{\pi}{8} \log 2$.
(f) Solve $(1+x^2) \frac{dy}{dx} + y = \tan^{-1} x$.
(g) Find the point on the curve $x = a (\theta + \sin \theta), y = a (1 - \cos \theta)$, where the tangent is inclined at an angle $\frac{\pi}{4}$ to the x-axis. (7x4)
2. (a) Solve the following system of simultaneous linear equations by Gauss elimination method : $4x + y + z = 4$
 $x + 4y - 2z = 4$
 $3x + 2y - 4z = 6$
(b) If $P = \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix}$ and $A = P \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix} P^{-1}$, find A.

- Obtain the eigen values and the eigen vectors for the matrix $A = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$ 3. (a)
 - Show that the length of the arc of the parabola $y^2 = 4ax$ intercepted between vertex (b) and an extremity of the latus rectum is a $\left[\sqrt{2} + \log(1 + \sqrt{2})\right]$. (9+9)
- 4. If $x = \cos\theta + i \sin\theta$ and $y = \cos\varphi + i \sin\varphi$. Show that the value of (a) $x^{m} y^{n} + \frac{1}{x^{m} u^{n}} \operatorname{is} 2 \cos(m\theta + n\varphi)$.
 - Find the asymptote of the following curve $x^3 + 2x^2y xy^2 2y^3 + xy y^2 1 = 0$. (b)

(c) Evaluate
$$\int \frac{dx}{(x-1)^2 (x-2)}$$
. (6+6+6)

- Find the maximum and minimum values of the function $f(x) = 4x^{-1} (x-1)^{-1}$ for all 5. (a) $x \in \mathbb{R} - \{0, 1\}.$
 - Examine the continuity of the function (b)

$$f(x) = \begin{cases} (1+2x)^{\frac{1}{x}}, \text{ when } x \neq 0\\ e^2, \text{ when } x=0 \end{cases}$$
 at $x=0$

- Expand the polynomial $f(x) = x^3 2x^2 + 3x + 5$ in the positive integral powers of (x 2). (c) (6+6+6)
- (a) Find the area of the ellipse $\frac{x^2}{x^2} + \frac{y^2}{b^2} = 1$. 6.
 - (b)Find the equation of ellipse under the conditions : Center at (0, 0); Latus rectum = 10 and distance between foci = Length of minor axis. (9+9)

7. (a) Solve
$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - y = x^3$$
.

- If \hat{a} and \hat{b} are unit vectors and θ is the angle between them, Show that (b) $\sin \frac{\theta}{2} = \frac{1}{2} \left| \hat{a} - \hat{b} \right|.$
- Find the parametric equation of the line through the point (1, -2, 2) and perpendicular (c) to the plane x + 2y - 3z = 5. (6+6+6)