B0-R4: BASIC MATHEMATICS

NOTE:

1.	Answer question 1 and any FOUR from questions 2 to 7.
2.	Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours

Total Marks: 100

1.
a) Express
$$(5-3i)^2$$
 in the form $a + ib$.
b) Find $\lim_{x \to 1} \frac{x^2 + 1}{x + 100} + \lim_{x \to 0} \frac{sin 2x}{x}$
c) If $\underline{p} + \underline{q} + \underline{r} = \underline{q}$, $|\mathbf{p}| = 3$, $|\mathbf{q}| = 5$, $|\mathbf{r}| = 7$, find the angle between \underline{p} and \underline{r} .
d) Draw the graph of $\mathbf{y} = \mathbf{x} + |\mathbf{x}|$ and compute $\int_{-1}^{1} [x + |x|] dx$.
e) Evaluate the area between the parabola $\mathbf{y} = \mathbf{x}^2$ and the lines $\mathbf{x} = 1$ and $\mathbf{x} = -1$.
f) If $\mathbf{x} = \cos\theta + \theta\sin\theta$, $\mathbf{y} = \sin\theta - \theta\cos\theta$, find $\frac{dy}{dx}$ at $\theta = \frac{\pi}{4}$.
g) Test the convergence of the series $1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$ for all \mathbf{x} .
2.
a) Show that the matrix $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$
satisfies the equation $A^2 - 4A + 1 = \mathbf{0}$ where \mathbf{I} is $2x2$ identity matrix and \mathbf{O} is $2x2$ zero matrix.
Using this equation, compute \mathbf{A}^3 .
b) Evaluate the determinant
 $\Delta = \begin{vmatrix} b+c & a & a \\ c & c & a + b \end{vmatrix}$
(10+8)
3.
a) Evaluate the following limit $\lim_{x \to 0} \frac{tan 2x - sin 2x}{x^3}$.
b) Differentiate the following function with respect to \mathbf{x} ; (sin \mathbf{x})^{wr.}.
c) If sin $\mathbf{y} = \mathbf{x} \cos(\mathbf{a} + \mathbf{y})$, show that $\frac{dy}{dx} = \frac{\cos^2(a + \mathbf{y})}{\cos a}$, hence compute $\frac{dy}{dx}$ when $\mathbf{x} = 0$.

(6+6+6)

4.

- a) State Rolle's theorem. Discuss the applicability of Rolle's theorem for the function on the indicated interval f(x) = |x| on [-1, 1].
- b) Find the slope of the tangent to curve $x^2 + 3y + y^2 = 5$ at (1, 1).
- c) Find the maximum profit that a company can make if the profit function is given by $p(x) = 41 + 24x 18x^2$.

Evaluate e^{3x}

i)
$$\int \frac{c}{1+e^{3x}} dx$$

ii)
$$\int \frac{1}{x^2+4x+8} dx$$

b) Find the area of the region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

c) Form the differential equation of the family of curves represented by $c(y + c)^2 = x^3$.

(6+6+6)

6.

a) Show that the series

$$\sum_{n=1}^{\infty} \frac{n}{2n+1}$$

converges.

b) If
$$\underline{u} = \hat{i} + 2\hat{j} - 2\hat{k}$$
 and $\underline{v} = 3\hat{i} + \hat{k}$,
Find $\underline{u} \times \underline{v}$.

c) Compute
$$(1+\sqrt{3}i)^9$$
, $i=\sqrt{-1}$.

d) Draw the graph of
$$y = xe^{-x}$$
, $x > 0$.

(6+4+4+4)

a) Find all the points of local maxima and minima of the function
 f(x) = x³ - 6x² + 9x - 8

 b) Find the point on the curve y = 2x² - 6x - 4 at which the tangent is parallel to x-axis.

(12+6)