B0-R4: BASIC MATHEMATICS

NOTE:

- 1. Answer question 1 and any FOUR questions from 2 to 7.
- 2. Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours Total Marks: 100

- 1. (a) Find the polar form of the complex number $\frac{1+2i}{1-3i}$.
 - (b) Find the rank of the matrix:

$$\begin{bmatrix} 1 & 2 & -1 & 4 \\ 2 & 4 & 3 & 5 \\ -1 & -2 & 6 & -7 \end{bmatrix}$$

- (c) If the length of the diagonal of a square is increasing at the rate of 0.2 cm/sec, then find the rate of increase of its area when the length of its side is $30/\sqrt{2}$ cm.
- (d) Evaluate $\lim_{x \to \pi/2} \frac{\cot x \cos x}{(\pi 2x)^3}$.
- (e) Find the slope of tangent on the curve $x^3 + y^3 = 3axy$ at the point $\left(\frac{3a}{2}, \frac{3a}{2}\right)$.
- (f) Solve the differential equation $\frac{dy}{dx} + \frac{y}{x} = y^2$.
- (g) Check the convergence of the alternating series:

$$\frac{1}{1.3} - \frac{2}{3.5} + \frac{3}{5.7} - \frac{4}{7.9} + \dots \infty$$
 (7x4)

2. (a) If
$$s = a + b + c$$
, show that
$$\begin{vmatrix} s+c & a & b \\ c & s+a & b \\ c & a & s+b \end{vmatrix} = 2s^3$$
. (6)

(b) Solve the system of simultaneous linear equations using "Cramer's rule": (6)

$$2x - 3y + 5z = 16$$
$$3x + y - 6z = -11$$

$$-x + 2y + 4z = 12$$

(c) Find the Eigen values and Eigen vectors of the matrix :

$$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

(6)

- 3. (a) Find all the asymptotes of the family of curves $y^3 xy^2 x^2y + x^3 + x^2 y^2 = 0$. (8)
 - (b) Find the local maximum and local minimum of the function: $f(x) = 2x^3 21x^2 + 36x 30$
 - (c) Find the value of c in Mean Value Theorem when $f(x) = 2x^3 5x^2 4x + 3$, $x \in [1/2, 3]$.
- 4. (a) Evaluate $\int_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx$. (5)
 - (b) Find the area of the region bounded by the curves y = |x-2|, x = 1, x = 3 and x -axis. (5)
 - (c) Solve the homogeneous linear differential equation: (8)

$$x^{2} \frac{d^{2}y}{dx^{2}} + 2x \frac{dy}{dx} - 20y = (x+1)^{2}$$

5. (a) Check the convergence of the series: (6)

$$\sum_{n=1}^{\infty} \frac{2n^3 + 5}{4n^5 + 1}$$

(b) Discuss the convergence of the series: (6)

$$\frac{x}{1.3} + \frac{x^2}{3.5} + \frac{x^3}{5.7} + \dots \infty$$

- (c) Using Taylor's series, find the expansion of $\tan x$ about a point $x = \pi/4$. (6)
- 6. (a) Solve the equation $x^7 + x^4 + x^3 + 1 = 0$. (6)
 - (b) Sketch a graph of the conic $r = \frac{6}{2-\sin\theta}$ and write its Cartesian equation. (6)
 - (c) Find the vertex, focus, axis, length of latus-rectum and equation of directrix of the conic $y^2 x 2y + 2 = 0$. Also, trace the graph. (6)

Page 2 B0-R4/08-22

- 7. (a) Find all the vectors of the magnitude 8 that are perpendicular to the plane of $\hat{i}+2\hat{j}+\hat{k}$ and $-\hat{i}+3\hat{j}+4\hat{k}$. (4)
 - (b) Find the vector equation of the plane passing through the points $\hat{i} + \hat{j} 2\hat{k}, 2\hat{i} \hat{j} + \hat{k} \text{ and } \hat{i} + 2\hat{j} + \hat{k}.$ (4)
 - (c) Find the projection of the vector $2\hat{i} \hat{j} + \hat{k}$ to the vector $\hat{i} + 2\hat{j} + 2\hat{k}$. (4)
 - (d) Verify that for given set of 3 vectors.

$$\overrightarrow{a} = \overrightarrow{i} + \overrightarrow{j} - 2\overrightarrow{k}$$

$$\overrightarrow{b} = 2 \overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}$$
 and,

$$\overrightarrow{c} = \overrightarrow{i} + 2\overrightarrow{j} + \overrightarrow{k}$$

$$\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = (\overrightarrow{a} \cdot \overrightarrow{c}) \overrightarrow{b} - (\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{c}$$
 (6)

- o O o -

Page 3 B0-R4/08-22

