B5.2-R4 : AUTOMATA THORY AND COMPILER DESIGN

NOTE :

- 1. Answer question 1 and any FOUR from questions 2 to 7.
- 2. Parts of the same question should be answered together and in the same sequence.

Time : 3 Hours

TUTAL MAINS . 100	Total	Marks	:	100
-------------------	-------	-------	---	-----

1.	Expl	plain the following with example :	
	(a)	Mathematical induction	
	(b)	Non - Deterministic Finite Automata	
	(c)	Equivalence of CFG and PDA	
	(d)	Optimization of DFA-Based Pattern Matchers (7+)	7+7+7)
2.	(a)	Define Ambiguous grammar. Show that the following grammar is ambiguous and write the unambiguous grammar for the same. $S \rightarrow A/B, A \rightarrow aAb/ab, B \rightarrow abB/^{\wedge}$	S
	(b)	Explain with a suitable example, the Top-Down Parsing, Bottom-Up Parsing.	(10+8)
3.	(a)	Discuss the issues in the design of a code generator.	
	(b)	Construct the basic blocks for the following three address statement, Sum =0; for (i=0; i <=10; i + +) Sum =sum+a [i];	(9+9)
4.	(a)	Define Turing Machine and explain how Turing machine can be used to comput	e
	(b)	Design Turing Machine to recognize the following : $L = \{W C W^R / W \in (a + b)^* \& c \text{ is a or } b\}$ R : Reverse	(9+9)
5.	(a)	Discuss the benefits of dynamic storage allocation. Explain various dynami storage allocation techniques in detail	C
	(b)	Discuss the issues of source language, and how can it be overcome? Explain is detail.	n (9+9)
6.	(a)	Obtain the DAG for the expression a+a*(b-c)+(b-c)*d. Explain the steps to construct the same	ct
	(b)	Translate the arithmetic expression a+ - (b+c) into quadruples, triples and indirect triples.	ct
	(c)	Explain the syntax directed translation of switch statements. (0	6+6+6)
7.	Writ	ite short notes on any three .	
	(a)	Pumping lemma for CFL with example	
	(b)	CNF	
	(c)	Universal TM	
	(d)	Parsing	6+6+6)
		- o O o -	