B0-R4: BASIC MATHEMATICS

NOTE:

1. Answer question 1 and any FOUR from questions 2 to 7.
2. Parts of the same question should be answered together and in the same sequence.
Time: 3 Hours
Total Marks: 100
3.

a) Express $\frac{(3-2 i)(2+3 i)}{(1+2 i)(2-i)}$ in the form of $x+i y$ where x and y are real numbers.
b) Find $\frac{d y}{d x}$ when $x=\log t+\sin t, \quad y=e^{t}+\cos t$.
c) If one root of the equation $\left|\begin{array}{lll}7 & 6 & x \\ 2 & x & 2 \\ x & 3 & 7\end{array}\right|=0$ is $x=-9$, then find the other roots.
d) Evaluate $\int \frac{x-1}{(x-2)(x-3)} d x$.
e) If $\vec{a}=i-2 j+k, \vec{b}=2 i+j+k$ and $\vec{c}=i+2 j-k$ then determine the vector $\vec{a} \times(\vec{b} \times \vec{c})$.
f) Find the equation of the hyperbola whose conjugate axis length is 5 and the distance between the foci is 13 .
g) Test the convergence of series $1+\frac{1}{2^{2}}+\frac{1}{3^{3}}+\frac{1}{4^{4}}+\frac{1}{5^{5}} \cdots$.
2.
a) Determine the values of λ and μ so that the system of linear equations

$$
\begin{aligned}
& 2 x+3 y+5 z=9 \\
& 7 x+3 y-2 z=8 \\
& 2 x+3 y+\lambda z=\mu
\end{aligned}
$$

have (i) no solution (ii) a unique solution (iii) an infinite number of solutions.
b) Show that the characteristics equation of a matrix $A=\left[\begin{array}{rrr}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$, is $\lambda^{3}-6 \lambda^{2}+9 \lambda-4=0$. Use it to find A^{-1}.
3.
a) If $\sin y=x \cos (a+y)$, then show that

$$
\frac{d y}{d x}=\frac{\cos ^{2}(a+y)}{\cos a}
$$

Find the value of $\frac{d y}{d x}$ at $x=0$.
b) Discuss the applicability of the Lagrange mean value theorem for the function $f(x)=x(x-1)(x-2)$ defined in the interval $\left[0, \frac{1}{2}\right]$.
c) Evaluate $\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$.
4.
a) Find the area of the region $S=\left\{(x, y): x^{2}+y^{2} \leq 16, y^{2} \leq 4 x\right\}$
b) Find the equations of oblique asymptotes to the curve $x^{3}+3 x^{2} y-4 y^{3}-x+y+3=0$.
5.
a) Test the convergence of the series $1+\frac{x^{2}}{2}+\frac{x^{4}}{4}+\frac{x^{6}}{6}+\cdots$ for all real values of x.
b) Find the equations to the straight lines passing through the points $(3,-2)$ and inclined at 60° to the line $\sqrt{3} x+y=1$.
c) Find the equation of circle with centre (1, -3) and it touches the line $2 x-y-4=0$.
6.
a) Find eccentricity, coordinates of foci and length of the latus rectum of the ellipse $4 x^{2}+3 y^{2}=36$. Also find an equation of the tangent to the ellipse at the point $(3,-2)$.
b) Let a be a non-zero number. Examine the function $f(x, y)=x y+\frac{a^{3}}{x}+\frac{a^{3}}{y}$ for maxima and minima.
7.
a) Evaluate $\int_{1}^{2} \frac{d x}{x(x+1)^{2}}$.
b) Let $\vec{a}=2 i+k, \vec{b}=i+j+k$ and $\vec{c}=4 i-3 j+7 k$. Determine a vector \vec{p} such that $\vec{p} \times \vec{b}=\vec{c} \times \vec{b}$ and $\vec{p} \cdot \vec{a}=0$.
c) Evaluate $\lim _{x \rightarrow 0}\left\{\frac{x e^{x}-\log (1+x)}{x^{2}}\right\}$.

