NOTE:

1.	Answer question 1 and any FOUR from questions 2 to 7.
2.	Parts of the same question should be answered together and in the same sequence.
	•

Time: 3 Hours

Total Marks: 100

1.
a) Express
$$\frac{(3-2i)(2+3i)}{(1+2i)(2-i)}$$
 in the form of $x+iy$ where x and y are real numbers.
b) Find $\frac{dy}{dx}$ when $x = \log t + \sin t$, $y = e^t + \cos t$.
c) If one root of the equation $\begin{vmatrix} 7 & 6 & x \\ 2 & x & 2 \\ x & 3 & 7 \end{vmatrix} = 0$ is $x = -9$, then find the other roots.
d) Evaluate $\int \frac{x-1}{(x-2)(x-3)} dx$.
e) If $\vec{a} = i - 2j + k$, $\vec{b} = 2i + j + k$ and $\vec{c} = i + 2j - k$ then determine the vector $\vec{a} \times (\vec{b} \times \vec{c})$.
f) Find the equation of the hyperbola whose conjugate axis length is 5 and the distance between the foci is 13.
g) Test the convergence of series $1 + \frac{1}{2^2} + \frac{1}{3^3} + \frac{1}{4^4} + \frac{1}{5^5} \cdots$.
(7x4)
2.
a) Determine the values of λ and μ so that the system of linear equations
 $2x + 3y + 5z = 9$
 $7x + 3y - 5z = 8$
 $2x + 3y + 4z = \mu$
have (i) no solution (ii) a unique solution (iii) an infinite number of solutions.
b) Show that the characteristics equation of a matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$,
is $\lambda^3 - 6\lambda^2 + 9\lambda - 4 = 0$. Use it to find A^{-1} .
(9+9)
3.
a) If sin $y = x \cos(a + y)$, then show that
 $\frac{dy}{dx} = \frac{\cos^2(a + y)}{\cos^2(a + y)}$.

 $\frac{dx}{dx} \cos a$ Find the value of $\frac{dy}{dx}$ at x = 0.

b) Discuss the applicability of the Lagrange mean value theorem for the function
$$f(x) = x(x-1)(x-2)$$
 defined in the interval $\left[0, \frac{1}{2}\right]$.
c) Evaluate $\int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx$.
4.
a) Find the area of the region S = { (x, y): x² + y² ≤ 16, y² ≤ 4x}
b) Find the equations of oblique asymptotes to the curve $x^{3} + 3x^{2}y - 4y^{3} - x + y + 3 = 0$.
(9+9)
5.

- a) Test the convergence of the series $1 + \frac{x^2}{2} + \frac{x^4}{4} + \frac{x^6}{6} + \cdots$ for all real values of *x*.
- b) Find the equations to the straight lines passing through the points (3, -2) and inclined at 60° to the line $\sqrt{3}x + y = 1$.
- c) Find the equation of circle with centre (1, -3) and it touches the line 2x y 4 = 0.

- 6.
- a) Find eccentricity, coordinates of foci and length of the latus rectum of the ellipse $4x^2 + 3y^2 = 36$. Also find an equation of the tangent to the ellipse at the point (3, -2).
- b) Let a be a non-zero number. Examine the function $f(x, y) = xy + \frac{a^3}{x} + \frac{a^3}{y}$ for maxima and minima.

$$(9+9)$$

- 7.
- a) Evaluate $\int_{1}^{2} \frac{dx}{x(x+1)^2}$.
- b) Let $\vec{a} = 2i + k$, $\vec{b} = i + j + k$ and $\vec{c} = 4i 3j + 7k$. Determine a vector \vec{p} such that $\vec{p} \times \vec{b} = \vec{c} \times \vec{b}$ and $\vec{p} \cdot \vec{a} = 0$.

c) Evaluate
$$\lim_{x \to 0} \left\{ \frac{xe^x - \log(1 + x)}{x^2} \right\}$$
. (8+6+4)