C0-R4.B4: COMPUTER SYSTEM ARCHITECTURE

NOTE:

1.	Answer question 1 and any FOUR from questions 2 to 7.						
2.	Parts of the same question should be answered together and in the same						
	sequence.						

Time: 3 Hours

Total Marks: 100

- 1.
- a) Show a block schematic of a hardware construction for implementing the following control function:

P: $R2 \leftarrow R1$ where R1 and R2 both are n bit registers.

- b) Each line of an assembly language program is arranged in certain number of fields. Specify these fields and show the information provided by each field.
- c) Explain the difference between hardwired control and micro-programmed control. Is it possible to have a hardwired control associated with a control memory?
- d) Explain Register Indirect mode of addressing instruction. What is the advantage of defining this mode of addressing?
- e) Explain in brief, superscalar processor architecture.
- f) What major differences exist between the CPU and peripherals?
- g) Why is the cache memory employed in computer systems?

(7x4)

2.

a) Design a 4 bit arithmetic circuit using a 4 bit adder and 4 multiplexers which generates the eight arithmetic operations shown in the following table:

Select		Input	Output	Microoperation	
S ₁	S ₀	C _{in}	Ý	$D=A+Y+C_{in}$	
0	0	0	В	D = A + B	Add
0	0	1	В	D = A + B + 1	Add with carry
0	1	0	В	$D = A + \overline{B}$	Subtract with borrow
0	1	1	B	$D = A + \overline{B} + 1$	Subtract
1	0	0	0	D = A	Transfer A
1	0	1	0	D = A + 1	Increment A
1	1	0	1	D=A-1	Decrement A
1	1	1	1	D = A	Transfer A

b) Although there are 16 logic microoperations, most computers use only four, which are listed in the following function table:

S_1	S ₀	Output	Operation
0	0	$E = A \cdot B$	AND
0	1	E = A + B	OR
1	0	$E = A \oplus B$	XOR
1	1	$E = \overline{A}$	Complement

Using 4 gates (as required) and a multiplexer, draw a logic diagram of one stage of a circuit.
In the basic computer, the OR operation is not available as a machine instruction. Write a program to perform the OR operation using AND, CMA, STA and LDA instructions.

(8+4+6)

- 3.
- a) The following transfer statements specify a memory operation. Explain the memory operations in each case.
 - i) R2← M [AR]
 - ii) $M[AR] \leftarrow R3$
 - iii) $R5 \leftarrow M [R5]$
- b) Define stack and stack pointer as applied to a microprocessor. What do you understand by the PUSH and POP instructions for insertion and deletion of items?
- c) Write programs to evaluate the arithmetic statement:
 - X = (A + B) * (C + D) using
 - i) 3 address instructions
 - ii) 2 address instructions
 - iii) 1 address instructions
 - iv) Zero address instructions

(6+4+8)

- 4.
- a) Discuss the essential goals of CISC and RISC architecture? Describe the major characteristics of CISC and RISC processor.
- b) Suppose that we want to perform the combined multiply and add operations with a stream of numbers as follows:

$$A_i * B_i + C_i$$
 for $i = 1, 2, 3,7$

Implement each suboperation in a segment within a pipeline. Draw a block diagram and show the content of registers in pipeline for each clock cycle.

(8+10)

5.

- a) Design an array multiplier circuit that multiplies a binary number of four bits with a number of three bits to produce a product of seven bits using two 4 bit adders and required number of AND gates.
- b) Draw a block diagram for data transfer from I/O device to CPU through an interface.
- c) Explain the terms: bus request and bus grant as applied to direct memory access (DMA). What is the purpose of cycle stealing?

(8+4+6)

6.

- a) Enumerate the most striking difference between an I/O processor and a data communication processor, for communicating with the I/O devices.
- b) Explain the concept of Branch delay.
- c) Define a term "Virtual memory" as applied in large computer systems.
- d) Describe the purpose of basic components of a memory management system as applied to multiprogramming environment.

(4+4+4+6)

- 7.
- a) Differentiate between tightly coupled multiprocessor and loosely coupled multiprocessor. Which is more efficient in terms of interaction between tasks?
- b) Draw a block schematic for implementing a dual system bus structure for multiprocessors showing CPU, IOP, local memory and system bus controller.
- c) What are the advantages and disadvantages of the SISD and MISD architecture?
- d) Explain 4 major groups on which Flynn's classification is divided? What are the attributes on which, this classification depends?

(4+4+4+6)