B0-R4: BASIC MATHEMATICS

NOTE:

1. Answer question 1 and any FOUR from questions 2 to 7.

2. Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours Total Marks: 100

1.

a) Express the complex rational expression $\frac{(3-2i)(2+3i)}{(1+2i)(2-i)}$ in the form of x+iy, such that x and y are real numbers.

b) Evaluate $\lim_{x \to 0} x \log(\sin x)$.

c) Show that the matrix $\frac{1}{3}\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{bmatrix}$ is an orthogonal matrix.

d) Discuss the convergence or divergence of the following series:

 $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \cdots$

e) Solve the differential equation $\frac{dy}{dx} + \frac{y}{x} = y^2$.

f) Find the length of the curve $y = \log(\sec x)$ between the points x = 0 and $x = \frac{\pi}{3}$.

g) Using the properties of the definite integrals, evaluate, $\int_{0}^{\pi/2} \frac{\cos x - \sin x}{1 + \sin x \cos x} dx$.

(7x4)

2.

a) Find the inverse of a matrix $A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix}$ by the Gauss Elimination method. Show the

steps involved in it.

b) Let α and β be the roots of the equation $a \tan \theta + b \sec \theta = c$. Convert the given equation into a quadratic equation in $\tan \theta$, and then prove that $\tan(\alpha + \beta) = \frac{2ac}{a^2 - c^2}$.

(10+8)

3.

a) Find all the points of local maxima and minima of the function $f(x, y) = x^3 + y^3 - 3xy$.

b) Find all the asymptotes of the curve $2x(y-3)^2 = 3y(x-1)^2$.

(8+10)

- a) Find the area of the region bounded between the parabola $y^2 = 2x$ and the line y = 4x 1.
- b) Find the first three terms of the Taylor's series expression of $\sin x$ about $x = \frac{\pi}{2}$. (9+9)
- 5. a) Find the volume of solid generated by the revolution of the curve $y = \sin x$ from x = 0 to $x = 2\pi$ about x- axis.
- b) Let $f(x) = \frac{x}{1 + e^{\frac{1}{x}}}$, $x \ne 0$, f(0) = 0. Prove that f is continuous but not differentiable at x = 0.
- Solve the differential equation $(x+1)\frac{dy}{dx} y = e^x(x+1)^2$. (6+6+6)
- 6. a) Find the unit vector perpendicular to the plane of two vectors 3i + 2j k and 12i + 5j 5k. Also, determine the sine of the angle between them.
- b) Find the equation of the parabola whose focus is the point (2, 3) and whose directrix is the straight line x 4y + 3 = 0. Also find the length of its latus rectum. (8+10)

a) Find the characteristic roots and characteristic vectors of the matrix $\begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}.$

b) Find the equation of the circle which passes through the points (1,-2) and (4,-3) and its centre lies on the line 3x+4y=7.