«QP_SRLNO»

NOTE:

- 1. Answer question 1 and any FOUR from questions 2 to 7.
- 2. Parts of the same question should be answered together and in the same sequence.
 - 3. Only Non-Programmable and Non-Storage type Scientific Calculator allowed.

Time: 3 Hours

Total Marks: 100

1.

- a) Define numerical error. Give the general formulas to compute numerical errors.
- Evaluate the sum S = $\sqrt{3} + \sqrt{5} + \sqrt{7}$ to 4 significant digits and find its absolute and relative errors b) Solve the following system of equations using Matrix Inversion Method, if it holds.
 - $2x_1 2x_2 + 5x_3 = 13$ $2x_1 + 3x_2 + 4x_3 = 20$
 - $3x_1 + 3x_2 + 4x_3 20$ $3x_1 - x_2 + 3x_3 = 10$
- c) Let X be the normal variable with mean μ and standard deviation σ =10. Find the margin of error for a 90 percent confidence interval for μ corresponding to a sample size of 12. (consider z_{α} ,(α =0.10)=1.65).
- d) Define Random Variable. Explain functions of a random variable. Explain the independent Random variable.
- e) Suppose a random variable X has mean μ =25 and standard deviation σ =2. Use Chebyshev's inequality to estimate: (i) P(X ≤ 35), (ii) P(X ≥ 20).
- f) Solve $x^3 9x + 1 = 0$ for the root between x = 2 and x = 4 using the Bisection method. (up to 4 iterations)
- g) In a certain college, 4 percent of the men and 1 percent of the women are taller than 6 feet. Furthermore, 60 percent of the students are women. Suppose a randomly selected student is taller than 6 feet. Find the probability that the student is a women.

(7x4)

- 2.
- a) Using Newton's iterative method, find the real root of $x \log_{10} x = 1.2$, correct upto four decimal places.
- b) Use the Gauss-Jordon method to find the inverse of the matrix.

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3 \end{bmatrix}$$

- c) Suppose a student dormitory in college consist of the following.
 - 1. 30% are freshmen of whom 10% own a car
 - 2. 40% are sophomores of whom 20 % own a car
 - 3. 20% are juniors of whom 40% own a car
 - 4. 10% are seniors of whom 60% own a car

A student is randomly selected from the dormitory.

- i) Find the probability that the student owns a car.
- ii) If the student owns a car, find the probability that the student is a junior

(6+6+6)

a) Estimate the missing figure in the following table by using Newton's interpolating formula.

Х	1	2	3	4	5
Y=f(x)	2	5	7	-	32

b) Use Lagrange's interpolation formula to fit a polynomial to the Data. Hence find the value of u_1 .

Х	-1	0	2	3
Ux	-8	3	1	12

^{3.}

4.

a) Find the approximate value of

 $y=\int_0^{\pi} \sin x \, dx$

Using (i) Trapezoidal Rule (ii) Simpson's 1/3 rule by dividing the range of integration into six equal parts. Calculate the percentage error from its true value in both the cases.

b) Define conditional probability.

In a certain town, 25 percent of students failed mathematics, 15 percent failed chemistry, and 10 percent failed both mathematics and chemistry. A student is selected at random.

- i) If the student failed chemistry, what is the probability that he or she failed mathematics?
- ii) If the student failed mathematics, what is the probability that he or she failed chemistry?
- iii) What is the probability that the student failed mathematics or chemistry?
- iv) What is the probability that the student failed neither mathematics nor chemistry?

(9+9)

5.

a) Consider an equiprobable space S={1,2,3,4,5,6,7,8}; hence each elementary event has probability 1/8. Consider the events:

A={1,2,3,4},

B={2,3,4,5}

C={4,6,7,8}

- i) Show that $P(A \cap B \cap C) = P(A)P(B)P(C)$.
- ii) Show that:

1. P (A∩B) ≠P(A)P(B)

- 2. $P(A\cap C) \neq P(A)P(C)$
- 3. P (B∩C) ≠P(B)P(C)
- b) Suppose 300 misprints are distributed randomly through a book of 500 pages. Find the probability that a given page contain (a) exactly 2 misprints, (b) 2 or more misprints. (Use Poisson Distribution)
- c) State the Classical Central Limit theorem and give some of its applications in statistics estimation.

(6+6+6)

- 6.
- a) A fair coin is tossed three times. Let X equal 0 or 1 according as a head or tail occurs on the first toss, and let Y equal to the total number of heads that occur.
 - i) Find the distributions of X and Y.
 - ii) Find the joint distribution of X and Y.
 - iii) Determine whether X and Y are independent?
 - iv) Find Cov(X,Y)
- b) Suppose a coin is tossed 100 times, resulting in x heads. For what values of x will the null hypothesis that the coin is fair not be rejected on the basis of the chi-square test at the 0.05 significance level?

(9+9)

7.

a) Use least square regression to fit a straight line to

Х	1	3	5	7	10	12	13	16	18	20
Y	4	5	6	5	8	7	6	9	12	11

b) Marks obtained by few students in physics and chemistry are given by the following table. Compute the coefficient of determination.

Physics	18	16	15	10
Chemistry	15	12	9	17

c) Write down the importance of numerical and statistical techniques in the field of computer science.

(7+7+4)