C0-R4.B1: ELEMENTS OF MATHEMATICAL SCIENCES

NOTE:

- 1. Answer guestion 1 and any FOUR from guestions 2 to 7.
- 2. Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours Total Marks: 100

1.

a) Given that

$$A^{T} = \begin{bmatrix} 5 & 1 & 0 \\ 0 & -2 & -1 \\ 1 & 0 & 3 \end{bmatrix}, B^{T} = \begin{bmatrix} 6 & 3 & 1 \\ 1 & -15 & -5 \\ -2 & -1 & 10 \end{bmatrix}$$

Find the matrix multiplication of Matrix A with B. Also find the eigen value of matrix AB.

Find the domain and range of the function b)

$$f(x) = \frac{x}{1+x^2}.$$

Show that c)

$$\lim_{x\to 0} \frac{\log{(1+x)}}{x} = 1.$$

- Find the equations of tangents to the curve $y = x^3 + 2x + 6$ which is perpendicular to the line d) x + 14y + 4 = 0.
- Expand $tan^{-1}x$ upto x^7 by maclaurine series. e)
- Five salesman A, B, C, D and E of a company are considered for a three member trade f) delegation to represent the company in an international trade conference. Construct the sample space and find the probability that (i) A is selected (ii) Either A or B (not both) is selected.
- The number of traffic accidents in Berkeley, California, in 10 randomly chosen non-rainy days in g) 1998 is as follows:

Use these data to estimate the proportion of non-rainy days that had 2 or fewer accidents that year.

(7x4)

2.

Solve the system of equation equations a)

$$5x - 5y - 15z = 40$$
$$4x - 2y - 6z = 19$$
$$3x - 6y - 17z = 41$$

By Gauss – elimination method.

b) Find the rank of matrix A by Echolan method:

$$A = \begin{bmatrix} 2 & 1 & -7 & 14 \\ 6 & -3 & 19 - 38 \\ 1 & 0 & -3 & 6 \\ 2 & 1 & -6 & 12 \end{bmatrix}.$$

c)

Find the inverse of a matrix A where
$$A = \begin{bmatrix} 5 & 7 & -6 \\ 3 & 1 & -2 \\ 1 & -5 & 5 \end{bmatrix}.$$

(5+7+6)

3.

a) Resolve

$$f(x) = \frac{2x - 1}{(x + 1)(x^2 + 2)}$$

into partial fractions.

b) If

$$y = b \tan^{-1} \left(\frac{x}{a} + \tan^{-1} \frac{y}{x} \right),$$

find $\frac{dy}{dx}$.

c) Using mean value theorem, prove that

$$\frac{b-a}{b} < \log\left(\frac{b}{a}\right) < \frac{b-a}{a},$$

Where 0 < a < b.

(6+6+6)

4.

- a) Find the equation of line which passes through the point (3, 4) and sum of its intercepts on the axes is 14.
- b) Find the vertex, focus and direction of the parabola $4y^2 + 12x 12y + 39 = 0$.
- c) Find the equation of hyperbola, the length of whose latus rectum is 8 and ecentricity is $\frac{3}{\sqrt{5}}$.

(5+8+5)

5.

a) Test the convergence of the series

$$\sum_{n=1}^{\infty} \frac{1}{n^3} \left(\frac{n+2}{n+3} \right)^n.$$

- b) Expand log x inpowers of (x-1) by Taylor's Theorem upto fourth degree terms.
- c) Determine the Fourier series for the function

$$f(x) = \begin{cases} -1 + x, & -\pi < x < 0 \\ 1 + x, & 0 < x < \pi \end{cases}$$

Hence, deduce that $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$.

(5+5+8)

6.

- a) Three newspapers R, G and O are published in a certain city. It is estimated from a survey that of the adult population: 20% read R, 16% read G, 14% read O, 8 % read R and G, 5% read R and O 4% read G and O, 2% read all three. What is probability that read at least one of newspapers?
- b) What is Binomial distribution? Derive the first three moments about origin of binomial distribution. Also find the mean and variance.
- c) Obtain the moment generating function of Normal distribution.

(5+7+6)

- a) The regression lines of y on x and x on y are respectively y = a x + b, x = c y + d. show that $\frac{\sigma_y}{\sigma_x} = \sqrt{a/c}, \bar{x} = \frac{bc+d}{1-ac} \text{ and } \bar{y} = \frac{ad+b}{1-ac}.$
- b) i) Suppose $X1,...,X_n$ are independent Poisson random variables each having mean λ . Determine the maximum likelihood estimator of λ .
 - ii) Let X_1, \ldots, X_n be a random sample from a distribution with mean μ and variance σ^2 . Let \overline{X} be the sample mean, show that the expected value of the sample variance S^2 is equal to the population variance σ^2 .
- c) A die is thrown 276 times and the results of these throws are given below:

No. appeared on the die	1	2	3	4	5	6
Frequency	40	32	29	59	57	59

Test whether the die is biased or not.

(5+7+6)