C7-R4 : DIGITAL IMAGE PROCESSING AND COMPUTER VISION

NOTE :

- 1. Answer question 1 and any FOUR questions from 2 to 7.
- 2. Parts of the same question should be answered together and in the same sequence.

Total Time : 3 Hours

Total Marks : 100

- 1. (a) Differentiate between Image Enhancement and Image Restoration.
 - (b) Explain different frequency domain filters used in image processing.
 - (c) Use the hit-or-miss transform to identify the locations of the following shape pixel configuration in the given image below using the two structuring elements B_1 and B_2 .

0 1 0	0	0	0	0	0	0	0	0	0	0	0	
111	0	0	1	0	0	0	0	0	0	0	0	1
0 1 0	0	0	1	0	0	1	1	1	1	0	0	1 1 1
Shap	0	1	1	1	0	0	0	0	0	0	0	1
	0	0	1	0	0	0	0	1	1	0	0	B_1
	0	0	0	0	1	0	0	1	1	1	0	1 1
	0	0	0	1	1	1	0	0	1	0	0	
	0	0	0	0	1	0	0	0	0	0	0	1 1
	0	0	0	0	0	0	0	0	0	0	0	B ₂
Image A												

(d) Perform the Haar wavelet transformation for the following 1-D image.

[9 7 3 5]

Write short notes on the following :

- (e) JPEG compression
- (f) Prewitt edge detection
- (g) Hole filling

(7x4)

- **2.** (a) Write an algorithm to one-pixel thick m-path to a 4-paths.
 - (b) Computer the opening and closing operation on 5×5 image given the structural element 3×3 .

0	0	0	0	0			
0	1	1	1	0			
0	1	1	1	0			
0	1	1	1	0			
0	0	0	0	0			
Image I							

0	1	0
1	1	1
0	1	0

Structure Element S

(c) Explain how piecewise linear transformation can be applied on an image.

(6+6+6)

3. (a) Apply bit plane compression and decompression to the following image.

180	1	80	33	201	28
120	224	160	33	67	144
224	160	180	11	133	144

(b) An 8 Grey level image is given in the table below. Perform Histogram equalisation and draw Histograms of original and equalized images.

Grey Levels	0	1	2	3	4	5	6	7
Frequency of occurrence	100	90	300	450	800	1110	850	714

(c) What do you mean by dilation and erosion operation ? Justify whether these are invertible operations or not. (6+6-

(6+6+6)

- 4. (a) Explain different color models RGB, CMYK and HIS.
 - (b) Compute the gradients of the image performing the convolution of Sobel Kernels S_x in *x*-direction and S_y *y*-direction with the 5×5 image I.

				9 -
0	0	10	10	10
0	0	10	10	10
0	0	10	10	10
0	0	10	10	10
0	0	10	10	10

Image I

	0	
1	0	-1
2	0	-2
1	0	-1
	S _x	
-1	-2	-1
0	0	0
1	2	1
	S.,	

(c) Find Discrete Fourier Transform (DFT) of $x(n) = [2 \ 3 \ 4 \ 4]$

(6+6+6)

- 5. (a) Justify the statement "Huffman coding is a lossless compression technique".
 - (b) Explain parallel projection with suitable diagram.

(10+8)

(6+6+6)

- 6. (a) What is the difference between smoothing and sharpening techniques ?
 - (b) What is transformation ? Explain translation, rotation, scaling and shear.
 - (c) Explain optical flow based motion estimation.
- 7. (a) Discuss the advantages and disadvantages of global and local histogram equalization.
 - (b) Explain clustering based image segmentation technique.
 - (c) The following figure shows a 3-bit image of size 5-by-5 image in the square, with *x* and *y* coordinates specified, a Laplacian filter and a low-pass filter.

y x	0	1	2	3	4	_					
0	3	7	6	2	0	Lapl	acian	filter	Low	v-pass f	ilter
1	2	4	6	1	1	0	1	0	0.01	0.1	0.01
2	4	7	2	5	4	1	-4	1	0.10	0.56	0.10
3	3	0	6	2	1	0	1	0	0.01	0.1	0.01
4	5	7	5	1	2						

Compute the following :

i,

- (i) The output of a 3×3 mean filter at (2, 2).
- (ii) The output of a 3×3 median filter at (2, 2).
- (iii) The output of the 3×3 Laplacian filter is shown above at (2, 2).
- (iv) The output of the 3×3 low-pass filter is shown above at (2, 2).

(6+6+6)

- 0 0 0 -